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Mathematical Symbols

R set of real numbers

R, set of non-negative real numbers

R” set of n-dimensional real vectors

Rrxm set of n by m matrices with elements in R

Snxn set of symmetric matrices in R™*"

Sy set of positive definite matrices in R™*"

M7t the transpose of the matrix M

M-t the inverse of the invertible matrix M

tr(M) the trace of the square matrix M

diag(ay,aq,--+,a,) the n by n diagonal matrix with elements
a1, a9, -+, a, on the diagonal line

E(X) the expected value of the random variable X

I, the n-dimensional identity

0nsxcm the zero element of R™"*™

For M € §™*"

Amax (M) the maximum eigenvalue of M

M >0 (M >0) M is positive definite (positive semi-definite)

M <0 (M <0) M is negative definite (negative semi-definite)

M2 Hermitian square root of M
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Part 1

LQG Control of LPV Systems



Chapter 1

Analysis of Linear Parameter

Varying Systems

In this chapter, we first introduce the concept of LPV systems and quadratic stability, then
define LQG performance for LPV systems and derive performance bounds through two
analysis results.

In §1.1, we precisely define the class of systems we focus on in this thesis—linear
parameter varying (LPV) systems. In §1.2, we state the definition of quadratic stability
and its relation with other notions of stability, and derive some equivalent conditions for
quadratic stability. In §1.3, we talk about quadratic stabilizability and detectability. In §1.4,
we define LQG performance for quadratically stable LPV systems and give two performance
bounds. In §1.5, we discuss the computational aspects of these analysis results. In §1.6, we

compare our performance bounds with previous bounds in [PetH], [BerH4] .

1.1 LPV Systems

Before introducing the LPV systems, we need to define the set of all admissible parameter
trajectories. The restrictions in the definition guarantee the existence and uniqueness of

the solution to the differential equation governing an LPV system.

Definition 1.1.1 Parameter Variation Set
Given a compact set P C R?, the parameter variation set Fp denotes the set of all piecewise
continuous functions mapping R (time) into P with a finite number of discontinuities in

any interval.



Remark 1.1.1 In the remainder of this thesis, the notation p € Fp denotes a time-varying

trajectory in the parameter variation set, while p € P denotes a vector in a compact subset

of R®.
Now we define LPV systems which will be the focus of this thesis.

Definition 1.1.2 Linear Parameter Varying (LPV) System

Assume that the following are given:
e a compact set P C R?,
e a function A € C°(R*, R™ "),
e a function B € C°(R*, R"X"d),
e a function C' € C°(R*, R"*"), and

e a function D € C°(R*, R"*X"d),

An n-th order linear parameter varying (LPV) system is the one whose dynamics evolve as

= : (1.1.1)

where p € Fp, x(t),(t) € R", d(t) € R™ and e(t) € R™.

Remark 1.1.2 As the matriz functions A, B,C and D are continuous functions of param-

eter p, they are, in fact, norm-bounded on the compact set P.

The following definition summarizes some notation that will be used for the rest

of the thesis.

Definition 1.1.3 For any p € Fp,
o the linear time-varying system described by equation (1.1.1), is denoted 3,
o O, (t,ty) is the state-transition matriz of X,.

The notation Xp := {X,: p € Fp} represents the LPV system in Definition 1.1.2, we will
sometimes use (P, A, B,C, D) to illustrate the state-space date clearly.



1.2 Quadratic Stability of LPV Systems

In this section we state the concept of quadratic stability for LPV systems, and derive
equivalent conditions. Quadratic stability [Bar] is a strong notion of robust stability in
the sense that it holds for arbitrarily fast variations in the parameter trajectory p, and its

definition involves a single quadratic Lyapunov function.

Definition 1.2.1 Quadratic Stability
Given a compact set P C R®, and a function A € C°(R*, R™*"), the function A is quadrat-
ically stable over P if there exists a matriz P € S}*", such that for all p € P

AT(p)P + PA(p) < 0. (1.2.1)

Remark 1.2.1 Since A is a continuous function of parameter p € P, and P is compact, it
is clear that condition (1.2.1) implies that the left hand side is uniformly negative definite.
That is, there exists a scalar § > 0, such that for all p € P, AT (p)P+ PA(p) < —61,.

Next we formulate different necessary and sufficient conditions for quadratic sta-

bility.

Theorem 1.2.1 Given a compact set P C R®, and an integer m > 0, then the following

conditions are equivalent:
(1) function A(p) is quadratically stable over P,

2) for any C' € 5, R™X™) | there exists a matriz X € , such that for all p €
/e C e C’'(R*, R™X h ' X e S h that for all P
A(p)X + XA (p) + XCT (p)C(p) X < 0, (1.2.2)
3) for any B € S, RP™) | there exists a matriz Y € , such that for all p €
f B e CO(R*, R™¥ h ' Y e Sy h that for all P
AT ()Y + Y A(p)+ YB(p)BL (p)Y < 0. (1.2.3)

Proof: (1) = (2) From Remark 1.2.1 and quadratic stability assumption of function A(p),
there exists a matrix X € SI*", such that for all p € P

X 1A(p)+ AT (p) X~ < =41 (1.2.4)



Note C'(p) is continuous function on P thus is bounded, so there exists a scalar v > 0 such

that for all p € P

CT(p)C(p) < y4I. (1.2.5)
Multiplying equation (1.2.4) by v and adding to equation (1.2.5), we get

X A(p) + AT (p)y X+ CT () C(p) < 0

for all p € P. Redefining X = %X, gives condition (1.2.2).
(2) = (1) If the condition (1.2.2) holds, then for all p € P

A(p)X + XA (p) < =XCT(p)C(p) X <0,
that is
X~ A(p)+ AT (p) X! <0

for all p € P. So function A(p) is quadratically stable by Definition 1.2.1. Similarly, we can
prove that (1) < (3). |

The next notion is natural after the definition of quadratically stable function.

Definition 1.2.2 Quadratically Stable LPV System
For LPV system Xp in Definition 1.1.2, if A is quadratically stable over P, then Xp is a
quadratically stable LPV system.

Also we may define exponential stability for LPV systems as follows.

Definition 1.2.3 Exponential Stability
The LPV system in Definition 1.1.2 is exponentially stable if there exist some constants

M, o > 0, such that for all p € Fp and allt > 1

1 (¢, 7| < Mot

It is well known that for LTI systems, quadratic stability is equivalent to expo-
nential stability [Vid]. But for LPV systems, these two concepts are not the same any
more. Actually the quadratic stability implies exponential stability, which is shown in the

following lemma.



Lemma 1.2.1 Given a compact set P, and a quadratically stable LPV system

@(t) = A(p(t))x(1), (1.2.6)

where p € Fp. There exist constant scalars v1,v2 > 0 such that the state-transition matriz

®,(t,to), which characterizes all solutions to equation (1.2.6), satisfies
19 (¢, to) || < 7y el
for all p € Fp.

Proof: Using the fact that there exists a positive definite matrix P, such that

Alp)P+ PA(p) < -1
)\man S P < Amax-[

1t

where &, Apin, Amar are some positive numbers, the proof follows with v = (Apaz/Amin)
and v = (6/(2Amaz)-

1.3 Quadratic Stabilizability and Detectability

After the notion of quadratic stability, we will introduce quadratic stabilizability and de-
tectability concepts in this section, and formulate equivalent conditions for them. These

conditions will be used later in Chapter 3.

1.3.1 Quadratic Stabilizability

The notation of quadratic stabilizability is given by

Definition 1.3.1 Quadratic Stabilizability

Given a compact set P C R?®, the pair of matriz functions (A, Bz) is quadratically stabilizable
(QS) over P if there exist a matriz Pr € ST*", and a function F € C°(R*, R™*"™) such
that

[A(p) + Bz2(p) F(p)]" Pr + Pr[A(p) + Bz(p) F(p)] < 0

for all p € P. Such a function F is called a quadratically stabilizing state-feedback gain for
the pair (A, Bz) over P.

The following theorem states the equivalent conditions for quadratic stabilizability.



Theorem 1.3.1 Given a compact set P C R®. For any continuous functions (Cq1,Ch2) :

R® — (R"1 %", R™*™), the following conditions are equivalent:
(1) the pair (A, By) is QS over P,
(2) there exist a matriz X € S*" and a function F € C°(R®*, R"™*™), such that for all
peEP

Ap(p)X + X AL (p) + XCF(p)Cr(p) X < 0 (1.3.1)

where Ap(p) = A(p) + Ba(p) F(p), CE(p) = [CT(p) Chip)+ FT(p)],

(3) there exists a matriz X € S§*", such that for all p € P

A(p)X + X AT(p) - Ba(p) B (p) XCTi(p) 0 (1.3.2)

Cu(p)X —1In.,
where A(p) = A(p) — Ba(p)Cha(p).

Proof: It is straight forward to show that (1) < (2) using condition (1.2.2) in Theo-
rem 1.2.1.
(2) = (3) Condition (1.3.1) is equivalent to

X~ Ap(p) + AR(p) X+ CE(p)Cr(p) < 0 (1.3.3)
for all p € P. By Schur complement, equation (1.3.3) can be rewritten as
XUAp(p) + AE (XL CE(p)

CF(IO) _Ine

for all p € P. Define matrix functions R(p), U(p) and V (p) as follows:

<0 (1.3.4)

| X1A(p) + AT(0) X1 Chip) Chilp)
R(p) = Cui(p) L, 0 |
I Cra(p) 0 —In,
| X~1B,(p)
Ulp) = 0 , Vip):=1[l 0 0].
L.,




Now we can rewrite equation (1.3.4) as
G(p) = R(p) + U(p) F(p)V(p) + V' (p) F* (p)U" (p) < 0

for all p € P. The orthonormal bases of U(p), V (p) are

X 0 0 0
Ui(p) = 0 Lo, |+ Vilp)=| 1. 0
-Bi(p) O 0 In,

So if G(p) < 0 for all p € P, then

UL(p)G(p)UL(p) <0 and  VL(p)G(p)V](p) <0
hold for all p € P. This implies that

UL(p)R(p)UL(p) <0 and  VL(p)R(p)VI(p) <0

for all p € P. Note that Vi (p)R(p)V](p) < 0 yields no useful information. But by simple
algebra, we can verify that U (p)R(p)UL(p) < 0 is identical to condition (1.3.2).
(2) < (3) By Schur complement, condition (1.3.2) is equivalent to

A(p)X + X AT (p) = Ba(p)Bj (p) + XCT(p)Cr1(p) X <0, VpeP
which is equivalent to
T
(A= By (BIX™' 4+ Cn) | X+ X [A- By (BIX ™' + (s
T ~T -1 T Cu
+X [cf; ¢h - (X7'By +CF)] X <0 (13.5)
012 - (BgX_l + 012)

This results in a natural choice of state-feedback gain F'(p) = — {Bg(p)X_l + 012(,0)}, S0

that equation (1.3.5) can be rewritten as
Ap(p)X + X AL (p) + XCE(p)Cr(p)X <0, VpeP.

Clearly, the pair (A, Bs) is QS with quadratically stabilizing gain F' given above. |
By slight abuse of quadratic stabilizability concept, we can formulate equivalent

conditions for quadratic stabilization using static state-feedback as follows.



Theorem 1.3.2 Given a compact set P C R®. for any continuous functions (Cy, Dy3) :

R® — (R™1 %", R"1 %) the following conditions are equivalent:
(1) the pair (A, By) is QS by static state-feedback gain F,
(2) There exist matrices X € SI*" and R € R"™*" such that for all p € P

A(p)X + XAT(p) + Ba(p) R+ RTB] (p)  XC{(p) + RTD{3(p)
Ci(p)X + Dia(p)R —1

<0, (1.3.6)

(3) There exist matrices Y € SI*™ and S € R™*™ such that for all p € P
A(p)Y +Y AT (p) + Ba(p)S + ST B] (p) + Bi(p) Bi (p) < 0. (1.3.7)

Proof: (1) = (2) Note that the pair (A, By) is QS by constant I’ means Ap(p) := A(p) +
By (p) I is quadratically stable. So there exists a matrix X € S§*", such that

Ap(p)X + X AL(p) + XCE(p)Cr(p) X < 0

for any Cr(p) := Ci(p) + Di2(p)F and all p € P (condition (1.2.2) in Theorem 1.2.1).
Define R = F'X, the above inequality can be written as

A(p)X + XA (p) + Ba(p) R + R B (p) + [XC{ (p) + R" D15 (p)] [C1(p) X + Di2(p) R < 0 (1.3.8)

for all p € P. By Schur complement arguments, it is easy to see that equation (1.3.8) is
equivalent to the equation (1.3.6).

(1) < (2) The argument given above is reversed.

(1) < (3) It can be shown similarly by condition (1.2.3) in Theorem 1.2.1. |
1.3.2 Quadratic Detectability

First note, quadratic detectability is the dual of quadratic stabilizability.

Definition 1.3.2 Quadratic Detectability
Given a compact set P C R®, the pair (A,C3) is quadratically detectable (QD) over P if
there exist a matriz P, € S§*" and a function L € CO(R*, R"*"™), such that

PL[A(p) + L(p)C2(p)] + [Alp) + L(p)Ca(p)]" PL < 0

for all peP.



10
Similar to Theorem 1.3.1, we have the following theorem to give the equivalent

conditions for quadratic detectability.

Theorem 1.3.3 Given a compact set P C R®. For any continuous functions (B, B2) :

R® — (R™*™at R"*")  the following conditions are equivalent:
(1) the pair (A,C3) is QD over P,

(2) there exist a matriz Y € Sy*" and a function L € C°(R*, R™*"™), such that for all
peEP

AL (p)Y + Y AL(p) + YBL(p)BE(p)Y < 0

where Ar(p) := A(p) + L(p)Ca(p), Br(p) := [Bi1(p) Biz2(p) + L(p)],

(3) there exists a matriz Y € ST*", such that for all p € P

AT()Y +YA(p) = CF(p)Calp) YBulp) | _ (1.3.9)

B (p)Y —1
where A(p) := A(p) = Bia(p)Ca(p).

Proof: The equivalence of (A4, By) QS to condition (2) is clear from condition (1.2.3) in
Theorem 1.2.1. The proof for (2) < (3) is similar to the one for Theorem 1.3.1 with

L(p) == [Y 7' CT (p) + Bialp) |

1.4 LQG Performance and Analysis for LPV Systems

In this section we define an LQG performance measure for LPV systems. Based on the
equivalent conditions for quadratic stability in Theorem 1.2.1, two LQG performance bounds

for LPV systems are formulated in Theorem 1.4.1 and Theorem 1.4.2.
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1.4.1 LQG Performance Measure

Given a compact set P C R?, and the LPV system in Definition 1.1.2 with its “D” term

equal to zero, that is,

= : (1.4.1)

where p € Fp. The initial state 2(0) is a stochastic variable and independent of the white
noise d(t), with

E{x(0)} =: Zo, (1.4.2.a)
&{(2(0) = 7) (2(0) = 70)"} = Qu, (1.4.2.b)
e{d(t)d" ()} = Vot —t), (1.4.2.c)

where (Jo > 0, V > 0, are given.
We are concerned with the “worst-case” measure of LQG performance over all

admissible trajectories belonging to Fp.

Definition 1.4.1 LQG Performance of LPV Systems
Given a compact set P, and a quadratically stable LPV system in (1.4.1) and (1.4.2.), define
the LQG performance over finite interval [0,T] as

T
oT 1= sup E{l/ e (t)e(t) dt}.
pEFP T Jo

Furthermore, over the infinite horizon [0, 00) let 0o, 1= Tlim or.
—00

Lemma 1.4.1 Given a compact set P, and a quadratically stable LPV system in (1.4.1)
and (1.4.2.), then there exists a finite number M > 0, such that

or < M < o0

for all T > 0. Obviously, we have o, < M.

Proof: For any p € Fp, the output of LPV system is given by

e(t) = Clp(1))®,(t, 0)2(0) + /OtC(P(t))@p(t, 7)B(p(7))d(r)dr.
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As functions B and C are continuous, they are bounded on the compact set P and there

exist finite scalars kg, k¢ > 0, such that | B(p)|| < kB and ||C'(p)|| < k¢ for all p € P. Note
that 2(0) is uncorrelated with d(¢), then
)

e (I, 0.0m 0P + ¢ {| [ e, s

{ller} = s{Hc<p<t>>¢>p<t,o>x<o>+ [ o, Bl drir

IN

)

From Lemma 1.2.1 and assumption of quadratically stable LPV system, there exist vy, vy >

IN

1
KE||, (1, 0)[|* tr (T07h + Qo) + kg tr(V) / 1, (¢, 7)|*dr

0, such that ||®,(¢, 7)|| < y1el=2(=7) Integrating both sides from 7 = 0 to 7 = ¢, we get

! 2 7
D, (t dr < —

and ||®,(t,0)]]* < v obviously. This gives

T i
£ {le(IP} < k2t or (w0 +Qo) + KpkE tr(V)5 1.

Defining M := k%'yf tr (zoon + Qo) + k%k% tr(V)%f;, we have

or =sup & {l/T e (t)e(t) dt} <M < oo.
per |1 Jo

The claim is also true for T — oo and it can be shown by taking limit on both sides of
above inequality. |
Lemma 1.4.1 suggests that it is meaningful to bound LQG performance o7 (or

0s) for LPV system if it is quadratically stable. Later on, we will concentrate on the

performance measure Oq.

1.4.2 Analysis of LPV Systems with LQG Performance

Now we are in the position to study analysis results for LPV systems, which are given in

the unified framework of quadratic stability and LQG performance bounds.

Theorem 1.4.1 Given a compact set P and a quadratically stable LPV system in (1.4.1)
and (1.4.2.), define

X = {X SR r;lea%()\max [A(p)X-I— X AT (p) -I-XCT(,O)C(,O)X} < 0} ,
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then

< -1 T =:
Os < )%Ié%r;lea%( tr {X B(p)VB (p)} o

Proof: Since the system is quadratically stable, the set A’ is non-empty by condition (1.2.2)
in Theorem 1.2.1. For fixed X € X and any trajectory p € Fp on [0,T], there exists a
time-varying matrix function A(t) > 0 such that

dX—1

= 0= XTMA((0) + AT () X+ CT (p(0)Cp (1) + ().

From classical optimal control theory ([KwaS, Theorem 1.54]), we have

or = sup 5{1 [ O o0 m)e) dt}
T Jo

pEFP

IN

1 T
sup 7 s{ / () [CT () C(p(t) + A1) (1) dt+wT<T>X-1w<T>}

sup tr {X‘l [% (fofg + Qo) + /OTB(,o(t))VBT(p(t)) dt] }

pEFP

)yéfx max tr {X“l [% (foa_cg + Qo) + B(,O)VBT(,O)] } .

IN

IN

Taking limit 77— oo on both sides of above inequality leads to
Oso < max tr [X_IB(,O)VBT(,O)} . (1.4.3)
pEP

Note the inequality in equation (1.4.3) holds for any X € X', so that

< i -1 Tpy.
Os < )%Ié%r;lea%( tr {X B(p)VB (p)}

The second analysis test is given in dual form of Theorem 1.4.1.

Theorem 1.4.2 Given a compact set P, and a quadratically stable LPV system in (1.4.1)
and (1.4.2.). Define

Y= {Y €SP s max Ao Y A(p) + AT ()Y + Y B(p)V BT (p)Y] < 0} :
p
then

Os < inf max tr {Y_ICT(,O)C(,O)} =: f.
Y<Qyt, Yey reP



14

Proof: Note the constraint in Y is the slight modifications of condition (1.2.3). By The-
orem 1.2.1, the set Y is non-empty because the LPV system is quadratically stable. For a
specific time-varying trajectory p € Fp on [0,7], let Q(t) be the matrix satisfying Q(0) = Qo
and

%Q(t) = A(p(1))Q() + QAT (p(t)) + B(p(1))V BT (p(1)). (1.4.4)
then

Q1) = ,(t,0)Qu0f (1,0) + | @, (T Bl )VE ()@ (1 7) dr.

Given Y € Y with ¥ < Qg*', there exists a time-varying matrix A(t) > 0 such that

0= A(p)Y ™ + Y AT (o(0) + B(ol)V B (p(t)) + AL, (1.4.5)
Subtracting equation (1.4.5) from (1.4.4), we get
(- Qm) = Am) (Y- QW) + (Y- QM) A ((0) + A,

This yields
YT Q) = 0,(t,0) (Y™ = Qo) @ (1,0) + /t ®,(t, T)A(T)DL(t,7) dr > 0.
0

As Y < Qpt, it follows Y1 > Q(t) for all t € [0,7]. Using Lemma 1.2.1, we get
[, (2, 0)[|* < ~4f =: 6 and

= s e f [T () C ot )
or = pseujgj 7/, x p p(t))z
T T
< —s{ G 19,0001 ol i+ [ o [C0)QUICT (1) dt}
< {3 0 [Clo®pr (20F) CT(pie)] + 17 [Clo0)QUICT (0101
< max tr {C’(p) [% tr (fofg) I-I—Y_l] C’T(p)}.

Note that ¢ is independent of T'. Taking limit 7" — oo on both sides of above equation leads

to
o < tr Y107 .
00 < max tr [Y7'CT(0)C ()|
The above inequality is true for any Y € Y with Y < Qg so that

Os < inf max tr {Y_IC’T(p)C’(p)} .
Y<Qg', Yey r€P
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Remark 1.4.1 If the system is linear time-invariant, then o in Theorem 1.4.1 and (3 in

Theorem 1.4.2 are the best upper bounds. In fact
IC(sI = A)T'B|} =a =8,
so both bounds are the actual cost for LTI systems.

For LPV systems, Theorem 1.4.1 and Theorem 1.4.2 give two LQG performance
bounds, which may not be the same. For a particular problem, either bound can be better

than the other.

Example 1.4.1 Given P = [—1, 1], consider a LPV system

where p € Fp. Zog = 0 and Qo = 0, d(t) is a while noise with intensity 1. Let A(p) =
Ao + pAi, B(p) and C(p) are constant matrices.

Solution: Case 1: Suppose

—-1.0 0.8 0 05
AO = 9 A]_:

0 20 ~0.5 0

1.0 0 1.342 0.447
B = s C:

| 0 1.0 0.447 0.894

Then from Theorem 1.4.1 and Theorem 1.4.2, we get o = 1.64 < 3 = 1.98.
Case 2: By exchanging B and C' matrices, that is
1.342  0.447 1.0 0

B

0.447 0.894 0 1.0

we get = 1.67 < a = 2.04. |
In Chapter 2, we will use analysis results given by Theorem 1.4.1 and Theorem 1.4.2

to solve state-feedback control and state estimation problems for LPV systems.
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1.5 Convexity and Complexity of Analysis Results

In this section, we discuss general properties of two analysis results given by Theorem 1.4.1
and Theorem 1.4.2. Our goal is to reformulate the existing conditions in the form of linear
matrix inequalities (LMIs) [PacZPB], [BoyEFB], which have advantages from a computa-
tional point of view.

First, define the matrix valued functions

[ A())X + XAT(p) XCT
Rk (X.p) = (p) X + (p) (p) |
L C(IO)X _Ine
YA+ AT())Y YB(o)VE
RIC(V.p) = (pl)+ (p) (p)
vy,

Note that Ric% (X, p) < 0 is nothing but the stability condition (1.2.2) by Schur comple-
ment. Similarly Rici (Y, p) < 0 is equivalent to condition (1.2.3). But it is easy to see that

while Ric% (X, p) is an affine function of its variable X, condition (1.2.2) is not. Similarly
Ric (Y, p) is affine on Y.

Lemma 1.5.1 For fized p € P, the scalar valued function A\, [Rick(X,p)] : SE*" = R

nxXn

is convex of its variable X, and Apq, [Ricy (Y, p)] : S3*" — R is convex function of Y.

Proof: A, (-) is a convex function of its argument, and Ric% (X, p), Ric} (Y, p) are affine

functions of X, Y respectively, so the convexity of both functions is clear. |

Remark 1.5.1 By Schur complement, the set X' defined in Theorem 1.4.1 can be expressed
with Rick,
v={xespm: Rick(X,p)<0}.
pEP

Hence X is a convex set. Similarly, Y is convex set of Y.

Next we will state a generalization of the result from [KhaR] which is about the

convexity of function f(X,Y) =tr (RTXTY_IXR).

Lemma 1.5.2 Let R € R™*™ be invertible, define a function f(X,Y) = tr (RTXTY‘lXR)
where X € R™™ andY € 8", Then f is convex function of X,Y jointly.



17

Proof: For the proof of special case R = I, see [KhaR]. Generally, define X = X R, then
XYy =t (RTXTYIXR) = tr (XTY7IX) = f(X,Y)

Function f is convex of X,Y. For any X, X, € R™™ and V;,Y; € SY ", we have from

the definition of convex function that
- \T R .
tr [(AXl F = NE) Y+ (1= ¥ (AR 4 (1 - )\)Xg)]
< Ao (XIV7IR) 4+ (1= ) o (RTYLR).
Substitute X7, Xy back by X, Xy, we get the inequality which shows clearly the convexity
of function f. |

With above two lemmas in mind, now we can study the computational issues of

LQG performance bounds « and j3.

1.5.1 Simplification of Analysis Results

Under some simplifying assumptions on state-space data, the computation of «, 3 become
finite-dimensional convex programs. By finite-dimensional, we mean finite number of ob-

jectives and constraints. The assumptions we need are:

e P is a convex polytope in R® with its (finite) set of extreme points denoted by V,

e A, B and C are all affine functions of p, that is

Alp) = Ao+ pidi, (1.5.1.a)
=1

B(p) = Bo+ )Y piBi, (1.5.1.b)
=1

Clp) = Co+ Y pCi (1.5.1.c)
=1

Then we have the following result:
Theorem 1.5.1 Given P, V, A, B, C as above. Define

XY = {X €Sy max Amaz [A(U)X + X AT (v) + XCT(U)C(U)X} < 0},
and oY as

o := inf max tr {X_IB(U)VBT(U)} :
XexVv vey

Then X = XY and o = oV, where X, a are defined in Theorem 1.4.1.
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Remark 1.5.2 X'V is a finite constraint set of X as V is finite element set. Recall a

well-known lemma from convex analysis: for convex function f(p) over convex polytope P,

max f(p) = max f(v).

Proof of Theorem 1.5.1: Obviously, X C X'Y. Using Schur complement argument, we

rewrite sets A’ and A’V as
¥ o= {Xespm: Ric(X,p)<0,VpeP},
xvo= {X € 8" Rick(X,v) <0, Vve v}.

Let X € XY. By the assumptions of affine dependence of A and C' on parameter p, we
conclude that A,q, [Rick (X, p)] is a convex function of p for fixed X. From Remark 1.5.2,
it is clear that for all p € P

Amax {Ricg{ (X, p)} < r;lea%( Amax {Ricg{ (X, p)} = rqflea‘gc Amax {Ricg{ (X, v)} <0,

which implies that X € X. So X = AV,

For fixed X € X, define function f(p) :=tr [V%BT(p)X‘lB(p)V%}. Note that f
is a convex function of B by Lemma 1.5.2, and B is in the affine form of parameter p, so
f is a convex function of p. It is a known fact (see Remark 1.5.2) that a convex function
achieves its maximum at extreme points. Given convex polytope P, its finite set of extreme

points V and convex function f(p), we have

max f(p) = max f(v).

Combined with previous result X = AV, we finally get o = a”. |
Theorem 1.5.1 shows that with affine parameter dependence assumption on the
state-space data, the bound « becomes a finite-dimensional convex problem. A similar

result for the bound f is given below:

Theorem 1.5.2 Given a convex polytope P with V as its finite set of extreme points, and

affine assumptions in (1.5.1.) on the state-space data. Define
o= {Y €Sy max Amaz {YA(U) + AT (v)Y + YB(U)VBT(U)Y} < 0},
and BY as

V.= inf tr [YLOT (0)C'(v)].
1= ol oy [V )]

Then'Y =YY and = Y, where Y, 3 are defined in Theorem 1.4.2.

Proof: The proof is similar to the one for Theorem 1.5.1. |
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1.5.2 Complexity Study

In general, the bounds «, § are hard to compute because both involve an expression of

the form max to be minimized over the set & (or ), which includes infinite number of
€

constraints. Instead of computing o and 3 directly, we may minimize bounds for «, 3 as

follows.

Theorem 1.5.3 Suppose Wy > B(p)V BT (p), Wy > C1(p)C(p) for all p € P, then

[0}

IN

)}réfxtr (X_lWl) = Qgyb,

< inf tr (Y“le) =: Bsub,
Y<Qyt, Yey

where o, B are defined in Theorem 1.4.1 and Theorem 1.4.2 respectively.

Proof: Obviously,

. . -1 T . 1 T 1
a = )%Ié&r;lea%( tr {X B(p)VB (p)} _)%%{Yr;lea%( tr {X 2B(p)VB* (p)X 2}
. _1 1y -1 _
< )%réfxtr (X Wi X 2) = )%réfxtr (X Wl) = Qsyup-
Similarly, we can prove 8 < Bgup. |

By Lemma 1.5.2, the computations of the bounds ay,p, Bsup are convex optimiza-
tion problems of one objective over infinite number of LMI constraints (X € X', or Y € V).
These bounds can be computed approximately with finite constraints by gridding the com-
pact set P. Furthermore, ag,, and (g, are not affine functions of their variables X, Y

respectively, but this can be cured by appending another variable to the optimizations.

Corollary 1.5.1 Define two functions

Z 1 zZ 1
(X, Z) = ., oY, Z)=
I X Y

Then the auypy and Bgy, given in Theorem 1.5.3 can be rewritten as

P inf  tr(ZWh),
Xex
P(X,2)>0

Boub = inf  tr(ZW,).
Y<Qyt, Yey

$(Y,2)20
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Proof: Let & := )}an tr(ZWy). The constraint ¢ (X, Z) > 0 simply implies Z > X 1.
¢(X7€Z)20
So we have

Qsub = )}Iéfxtr(X_lwl) < )géfx tr(ZW,) = a.
7>X -1

On the other hand, for any € > 0, there exists a matrix X € X, such that
tr(X_lWl) < Qgyp + €.
Choosing Z = X! which satisfies the condition Z > X', then

a= inf tr(ZW;) < tr(ZWl) < Qgup + €.
Xex
P(X,Z)>0

Note above inequality is true for arbitrarily small ¢, it must have & < agyp. So we get
Qgup = @ = inf  tr(ZWy).
XeX
Y(X,Z)>0

The proof for B, can be done similarly. |

Remark 1.5.3 After this, we will only mention such a standard transformation to LMI

formulation without proof.

We have shown the procedure to compute the LQG performance bounds for LPV
systems. It is an LMI optimization problem, though it generally requires gridding of the
parameter space. The resulting performance bounds can be computed efficiently by LMI
optimization methods, such as projective method [NemG], [GahNLC], method of centers
[BoyE], [NekF].

1.6 Comparison with Previous Results

We should point out that Theorem 1.4.1 and Theorem 1.4.2 are motivated by [PetH] and
[BerH4]. In these references, they develop clever matrix bounds for structured real param-
eter uncertainty, and then solve the resulting over-bounded Lyapunov or Riccati equality
using conventional techniques. Here, we use an inequality formulation which leads to a less
conservative bound for the LQG performance.

In this section, we concentrate on a particular bound, the Petersen-Hollot bound,

as generalized in [BerH4]. In the following theorem, the bound from [BerH4] is denoted ag.
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Theorem 1.6.1 Gliven a compact set P 1= [—01, 01]X[—82, 8] X+ - - X [=85, &5), where {5;}7_,
are non-negative, and the LPV system in (1.4.1) and (1.4.2.). Suppose A(p) := Ao-l-Z,Oz’Ai

=1

is affine function of p, and B,C are constant with C*'C > 0. For any positive numbers

{vi}i_,, define a set X} as
o= {Xesyr A(p)X + XAT(p) + XCTOX + A(p) =0,
A(p) = 252- (’yZ-XX + %AZAZT> — ipi (AZ-X + XAZT) , Vpe 77}
where v :=[y; -~ 7S]T. Furthermore, let

ap = inf inf tr (X-lBVBT) .
v Xex;

Then o < ag, where « is defined in Theorem 1.4.1.

Remark 1.6.1 Although the constraints in the set X} seem to depend on the parameters,
they are actually not. The element of the set X} is the positive definite matriz which satisfies
equation

AoX + X AT+ X (CTC +3° 52-%-1) X4+ FaAl =o.

=1 i=1 !

Proof of Theorem 1.6.1: First note, for any p € P, positive numbers {v;}’_, and

X € 87", we have

A(p) = Z 5; <%-XX n %AM?) . ZS:,OZ' (Ax +x47) > 0.

i=1 =1

The set X’ can be rewritten as

X={X eS8 A(p)X + XAT(p) + XCTOX +A(p) =0, Alp) >0, Vp e P},
also define an intermediate set X' to be

¥ ={X e8P A(p)X + XA (p) + XCTCX +A(p) =0, A(p) >0, ¥p e P}

Note that X C X for all positive vector ~. Let & := inf tr (X_IBVBT), then a, & and ap
XeX

are minimizations of the same function but over different sets (X', X and X respectively).

For any X € X, define a sequence of matrix X} := ,H_LIX, k=1,2,--- then

A(p)X + X AT (p)+ XCTCX + A(p) =0 (1.6.1)
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with A(p) > 0 for all p € P. Substitute X by 2L X} in equation (1.6.1), we get

1 k
Ap) X+ X AT (p) + XpCTC Xy = —EX;CCTCX;C -~ mA(p) <0

for any k. So X}, € X, k=1,2,--- and klim X;, = X. This proves that closure(X) = X
—00

and

a = inf tr (X-lBVBT) - ;réfitr (X-lBVBT).

. v -1 T .
Defining o := Xlél/f\fgtr (X BV B ) for given v, then
a < aj.
Taking the infimum over all possible v and leaving o < ap as desired. |

Remark 1.6.2 The same conclusion can be established for other kinds of bound in [BerHj].

We can easily derive the dual result for the LQG performance bound 3. The
following example (adopted from [BerH4]) shows that in some cases, @ < ap. So our
analysis results generally lead to less conservative bounds compared with over-bounding
equation approach. For a specific problem, it could be that they provide better bounds

than previous ones.

Example 1.6.1 A pair of nominally uncoupled oscillators with uncertain coupling is de-

scribed by
&(t) B Ao+ p(t)A; B z(t)
e(t) C 0 d(t)
where
-v w0 0
—w; —v 0 0 0 I
AO = ) Al = )
0 0 -V Wy L, 0
i 0 0 —wy —v |

with v = 0.2, w; = 0.2 and wy = 1.8. B = C = diag (2.236,1.495,1.0,0.669). Furthermore,

we assume d(t) is white noise with intensity V = I4.
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Solution: Given §; > 0. For |p| < §; and any positive 71, we have the Riccati equation
)
AoX + X AT + X (CTC+ 01y ls) X + 7—1A1A1T = 0. (1.6.2)
1

If equation (1.6.2) is solvable with X > 0, then one performance bound is given by
ag = tr (X‘lBVBT). But equation (1.6.2) may not have positive definite solution for
a given v;. For computational purpose, the minimization of ap is conducted by a simple
one-dimensional search for best +; first, then solve for resulted Riccati equation. On the
other hand, « is computed by convex optimization. The performance bounds over different

parameter intervals from both approaches are plotted in Figure 1.1. |

800 T T T T T T T T

700 I

600 I

500

LQG Performance Bounds
w N
o o
o o

n

=]

o
T

100

0 1 1 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Parameter Region
Figure 1.1: LQG performance bounds from Petersen-Hollot over-bounded
equation (dash-dot line) and inequality approach (solid line).

Last, we would like to compare the computational costs of two methods. The
computation of minimal bound «ap involves search for the best v. Currently, we do not
know how to search over a vector space of vy globally. So the bound ap can only be
calculated approximately by the gridding method. But bound « can be computed exactly
through convex optimization over 2° LMI constraints. The computational scheme for a
is systematic and very attractive because of recently developed techniques to handle LMI
optimization problem. Furthermore, This approach always provides less conservative bound

for LQG performance compared with over-bounding method we mentioned above.
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Chapter 2

Control of LPV Systems with
LQG Performance

In this chapter, we solve state-feedback, state-estimation and output-feedback control prob-
lems using the analysis results for LQG performance described in Theorem 1.4.1 and The-
orem 1.4.2.

In §2.1, we define the feedback problem. In §2.2, we study parameter-dependent
and robust state-feedback control of LPV systems. In §2.3 we discuss the state estimation
problem for LPV systems, which is the dual of state-feedback problem. In §2.4, we design
two output-feedback controllers based on the separation principle and the results established
in §2.2 and §2.3. Explicit LQG performance bounds are derived for both cases. In §2.5, we

give a computational scheme to compute the LQG performance bounds.

2.1 Quadratic LQG Performance Problem

Before formulating the problem we are interested in, we will define open-loop LPV systems

for control synthesis and the class of parameter-dependent controllers.

Definition 2.1.1 Open-Loop LPV System for LQG control

Given a compact set P C R?®, consider the open-loop LPV system Xp
&(t) Alp(t))  Bi(p(t))  Ba(p(t)) (1)
e(t) | = | Cilp(®)) Dulp(t)) Dia(p(t)) | | d(t) | (2.1.1)
y(t) Calp(t)) Daalp(t)) Dazlp(t)) | | ult)
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where p € Fp, z(t),2(t) € R™, d(t) € R, e(t) € R, u(t) € R"™ and y(t) € R". All
of the state-space matrices are continuous functions of p with appropriate dimensions. The

statistics of stochastic variables x(0) and d(t) are given by (1.4.2.).

For the purpose of simplification, the following assumptions are made on the state-

space data of LPV systems:

(A1) Di1(p) = Onexny:

(A2) Das(p) = Onyxnas

(A3) Dyy(p) is of full column rank for all p € P,
(A4) Dy (p) is of full row rank for all p € P.

Assumption (A1) is sufficient to render the feed through from d — e strictly
proper. Assumption (A2) can be relaxed easily. Under assumptions (A3) and (A4), the
D1y and Dy terms of above LPV system can be rewritten as [0 I]' and [0 I] through
norm-preserving transformations on disturbance/error and invertible transformations on

input/output signal.

Definition 2.1.2 Simplified Open-Loop LPV System for LQG Control
Given a compact set P C R®, and the open-loop LPV system Xp in Definition 2.1.1 with
Assumptions (A1) — (A4) hold, then the simplified open-loop LPV system can be written as

i) || Aet) BuG®) Bukew) Bew) || =0
el(t) _ Cll(p(t)) 0 0 0 dl(t) ’ (212)
ez (1) Cra(p(1)) 0 0 Ing, dy (1)
L) || Cale(D) 0 L., 0 ][ u®) |
where p € Fp. The statistics of stochastic variables x(0) and d(t) satisfy
E{x(0)} = o, (2.1.3.a)
&{[w(0) - 7o) [#(0) - 7)" } = Qu, (2.1.3.b)
) [ (1) dl(e)] b = Vil VelOl | s ) g
da(ty) Vib(p(t))  Vaa(p(1))

where Qo > 0, Vii(p) > 0, Vaz(p) > 0 and Vi1(p) — Via(p) Vg (p)Vih(p) > 0 for all p € P.
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The class of finite-dimensional, linear parameter-dependent controllers is defined

as:

Definition 2.1.3 Parameter-Dependent Controller

Let Kp denote a m-dimensional, parameter-dependent linear feedback controller, with the
continuous functions (Ax,Byk,Ck) : R® — (R™*™ R™*™y R™*™),  The dynamics of
controller Kp are

i (t) _ Ak (p(t)) Br(p(t)) ek (1) ’ (2.1.4)

u(?) Cr(p(1)  Onyxn, y(t)

where p € Fp, v is the m-dimensional controller states.

Define a5, (1) := [T (1) «k (0], eT(t) := T (1) el (t)| and a7 () := |d] (1) dT(1)].

clp
The closed-loop state-space data of LPV system using parameter-dependent controller is
explicitly given by

dan(t) | _ | Aalp(®) Baplot@) | [ wantt) | (2.15)

e(t) Cap(p(t))  Dep(p(1)) d(t)

where

Aalp) = A(p) By (p)Cx(p) | (2.1.6.0)

| Br(p)Ca(p)  Ax(p)

Bii(p) Biz(p)

Bap(p) = , (2.1.6.b)
| 0 Bg(p)

Caplp) = Cule) 0 , (2.1.6.)
| Ciz2(p) Ck(p)

Dap(p) = 0. (2.1.6.d)

The closed-loop system has D, = 0 because the “D” terms in open-loop LPV
system (Dy;1) and controller (D) are forced to be zero, which is sufficient to render finite
LQG performance for closed-loop system. Now the LQG control synthesis problem is defined

as follows:
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Definition 2.1.4 Quadratic LQG Performance Problem

Gliven the open-loop LPV system Yp in (2.1.2) and (2.1.3.), and parameter-dependent con-
troller Kp in (2.1.4), the LQG performance is

LTy T
or = sup &3 [ [l Werlt) + Feao] de
pEFP 0

Tlim or. Then the Quadratic LQG Performance Problem is: determine the
—00

quadratically stabilizing controller Kp such that the LQG performance is bounded above

and 0o =

and the bound is minimized.

The scalar o, represents the “worst” case cost for LQG performance over infinite
horizon. It depends on controller, but not on a particular trajectory p € Fp. We would like
to design linear parameter-dependent controllers that approximately ” minimize” the bound
of this criterion, and derive a computable upper bound to o.,. Also, for the special case
of LTI plant, without parameter dependence, the approach should recover the standard H,
optimal control results.

Before solving Quadratic LQG Performance Problem, we will study state-feedback
control problem with LQG performance and state-estimation problem in the next two sec-

tions.

2.2 State-Feedback Control Problem

For comparison, we state the LQG state feedback control problem for linear time-varying
(LTV) systems first. In this section, we study LQG state-feedback control problem for LPV
systems, which include both parameter-dependent and robust control cases. The problems
deal with the existence of a stabilizing state-feedback controller, such that the closed-loop
system has bounded LQG performance. Later on, the parameter-dependent state-feedback

control result will be used to solve Quadratic LQG Performance Problem.

2.2.1 LQG Optimal Control for LTV Systems

The LQG optimal control problem has been extensively studied in many literatures as linear
optimal regulator theory on both deterministic and stochastic setting [KwaS], [AndM]. Here
we state the stochastic optimal regulator result. Note that in the case of LTV systems, the

solution for optimal control is characterized by a matrix Riccati differential equation.
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Consider the LTV system described by

&(t) A(t)  Bi(t) Ba(t) z(t)
er(t) | = | Cuu(t) 0 0 dt) |- (2.2.1)
€2 (t) Clg(t) 0 Ine2 u(t)

(Note: we have assumed Dyy(t) = [0 I,,,,]"). The initial state 2(0) is a stochastic variable
with £{z(0)} = z¢, £ {(m(O) — Zo) (2(0) — EO)T} = (Qo. The intensity of white noise d(t) is
V(t) > 0. z(0) is independent of d(t).
The problem is to minimize the LQG performance criterion
1 T
of = =& {/0 (el (®er(t) + el (W)ea(t)] dt + xT(T)PTx(T)}

with a state feedback controller u(t) = F°(t)z(t). The result is given in the following

theorem.

Theorem 2.2.1 Given the LTV system in (2.2.1) and statistics of stochastic variables (0)

and d(t) as above. The optimal linear control law is

u(t) = FO(t)z(t),
where FO(t) = — {Bg(t)P(t) -|-012(t)}. P(t) is the non-negative definite solution of the
differential Riccati equation

—P(t) = P()A(t) + AT (t) P(t) — P(t) By(t) By () P(t) + C{ (1) Cua (1)

with terminal condition P(T) = Pr and A(t) := A(t) — By(t)Cia(t). The minimum of the
criterion is

o) = % tr lP(O) (azofoT + Qo) + /OT P(t)By ()V (t)BE (¢) dt| .

Proof: The proof can be found in many references, for example, see [KwasS].

2.2.2 Quadratic State-Feedback Control for LPV Systems

We now consider quadratic state-feedback control for LPV systems. Recall that we have
formulated in Theorem 1.3.1 the existence condition of quadratically stabilizing controller
as an LMI of the open-loop state-space data of LPV systems (condition (1.3.2)), the LQG

performance bound of the closed-loop system can be derived based on such a condition.
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Given a compact set P C R?, consider LPV system

() Alp(t))  Bip(t)) Balp(t)) | | =(t)
er(t) | = | Cia(p(t)) 0 0 ) | (2.2.2)
e2(t) Cra(p(t)) 0 I,y u(t)

where p € Fp. z(t) € R", d(t) € R™, u(t) € R™, ¢ (t) € R"! and ey(t) € R"2. The

initial state 2(0) is stochastic variable and is independent of white noise d(t) with

E{z(0)} = 2o, (2.2.3.a)
&{(2(0) = 7) (2(0) = 70)"} = Qu, (2.2.3.b)
e{d(t)d (o)} = V(p(t) 8(t —ta), (2.2.3.c)

where Qo > 0 and V(p) > 0 for all p € P.

Theorem 2.2.2 Given a compact set P, and a quadratically stabilizable LPV system in (2.2.2)
and (2.2.3.). Define a set X5 as
Xy = {X €SP ma A [A()X + XAT (9) = Balp) B () + XCT,(ACus(p)X] < 0},

then

< i -1 Ty,
00 < dnf max tr | X By(p)V (p)BY (o)

Proof: Suppose F'(p) is a state-feedback gain, then the closed-loop system is given by
(1) Ar(p(t)) Bup(t) | | =()
e(t) Crlp@®) 0 d(t)

where p € Fp, Ap(p) 1= Alp) + Ba(p)F(p) and CE(p) = [Ch(p) Chip)+ FL(p)]-
Given X € Sp™", by Theorem 1.3.1, X € A, if and only if there exists a function
F € C°(R*, R™*") such that

Ap(p)X + X AL (p) + XCE(p)Cr(p)X <0
for all p € P. Using such a quadratically stabilizing control F', we get
< i -1 T
0o < Jinf max tr [ XTI Bu(p)V(p)BY (p)]

from Theorem 1.4.1. |
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Comparing with LTV optimal regulator result given in Theorem 2.2.1, we could
see the similarity between them. But instead of solving differential Riccati equation for
LTV case, we formulate an inequality about matrix X for LPV systems, from which the
LQG performance bound is calculated. Note that X! in the bound plays similar role as

P for linear optimal regulator.

2.2.3 Robust State-Feedback Control of LPV Systems

Here we deliberately ignore real-time information of parameter, and apply Theorem 1.4.1
and Theorem 1.4.2 to solve LQG performance oriented, robust state-feedback control syn-
thesis problem.

Given a convex polytope P C R? with its finite set of extreme points denoted by

V), consider the open-loop LPV system

#t) | _ | Ale®) Bulp(t)  Balp(t)) a0 |- (2.2.4)

e(!) Cilp()) 0 Dualp(t))

where p € Fp, z(t) € R", d(t) € R™, u(t) € R™ and e(t) € R™. The statistics of
stochastic variables z(0) and d(¢) are given by (1.4.2.). Assuming all of the state-space

matrices are affine functions of p, that is

Alp) = Ao+ ZS:pZ-AZ-, (2.2.5.a)
i=1

Bi(p) = B+ ZS:,OZ-BH, (2.2.5.b)
i=1

By(p) = B+ ZS:,OZ-B%, (2.2.5.¢)
i=1

Ci(p) == Cro+ épicm (2.2.5.d)

Dy3(p) = Do+ ZS: piD12;. (2.2.5.¢)

i=1

Based on Theorem 1.3.2 about quadratic stabilizability using constant state-feedback,

we get the synthesis result for robust state-feedback control as follows:
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Theorem 2.2.3 Given a convex polytope P C R? with ils finite set of extreme points
denoted by V, and quadratically stabilizable LPV system by constant state-feedback in (2.2.4)
and (1.4.2.) with affine function assumption in (2.2.5.). Define two sets W)}ob,l, wYy

rob,2 as

W)'}ob,l = {(X, R) € 8" x R™*™ max Amaz [A(U)X + X AT (v)

+ Ba(v) R+ RY B (v) + (C1(v) X + Dia(v)R)" (C1 ()X + Dia(v) R)| < 0},
Whio = {(¥,8) €Sy x R

max Aras [A)Y + VAT (0) + Ba(0)S + ST BE (0) + By o)V B (v)] < o} .

(1) If there exist (X, R) € WY, |, then

Ooo < Qpop i= inf max tr | X 'By(v)VBI(v)]. 2.2.6
Somi= il max i [XTUB (VB (0) (2:26)
Picking feasible X, R which yields a cost close (as close as we want) to o,..p, then the

robust stabilizing state-feedback control law is given by u(t) = RX ta(t).

(2) If there exist (Y, S) € WY, , withY > Qq, then

— : -1 T
0w < = (;?g)ewyobﬁleayr [(cl(v)y + Dy (v)8) Y™ (CL(v)Y + Dia(v)S) } .

(2.2.7)

Picking feasible Y, S which yields a cost close (as close as we want) to Bgy, then the

robust stabilizing state-feedback controller is given by u(t) = SY " 1a(t).

Proof: We will prove the second part of the theorem only, the first part can be proved

similarly. Similar to WY

b2y define an intermediate set W,..p o as

Wiobs = {(Y, S) € STX™ x R

max \ae [A(0)Y + Y AT () + Ba(p)S + STBL () + Br(p)VBL (9)] < 0}

By affine parameter dependence assumption on state-space data, it is easy to show that
Wiopo = Wr"}ob,T The assumption of quadratically stabilizable LPV system using constant
state-feedback implies that the set WY , is non-empty (condition (1.3.7) in Theorem 1.3.2.

rob,

If there exist (Y,.5) € Wyop2 with Y > Qo, let F':= SY ™!, then for all p € P

AF(p)Y +Y Af(p) + Bi(p)V B (p) < 0 (2.2.8)
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with Ar(p) = A(p) + B2(p)F and Cr(p) = Ci(p) + D12(p)F. Equation (2.2.8) is equivalent

to
Y AR(p) + AR(p)Y T+ Y I Bi(p) VB (p)Y 1 <0, VpeP.

From Theorem 1.4.2, we get the following using transformation S = FY

oo < inf maxtr |Y CE(p)Cr(p
Y'>Qo, max,epAmaz[Ar(p)Y +Y AL(p)+B1(p)V BT (p)]<0 PEP { F(P)Cr )}
= inf max tr [ (C1(p)Y + Dia(p)S) Y ™" (C1(p)Y + Drz(p)S) |

Y>Q07 (sz)ewrobj ,OEP

Define function f(Y,S,p) :=tr [(C’l (p)Y + D12(p)S) Y =1 (Ci(p)Y + Dlg(p)S)T}, then
F(Y,8,p) = 11 [Ca(p)Y CT (p) + D1a(p)SCT (p) + C1(p) ST D3 (p) + D1a(p)SY ST DYy (p)] -

For fixed p, the first three terms of function f(Y,S,p) are convex for sure. For the fourth
L |
term, define D(p) = {Dﬂ(p)Dlg(p)] ? and note Djy(p) is invertible, so that

tr [ Dia(p)SY ST DYy (p)| = tr [D(p)SY ST ()]

which is convex function of Y, .S by Lemma 1.5.2. So f(Y, 5, p) is indeed a convex function
of Y, S for fixed p. Also by affine parameter dependence assumption, we can show that

f(Y, S, p)is convex function of parameter p for fixed Y, S. From Remark 2.5.2,
Y, 9, p) = Y, S, v).
max f(Y, 5, p) = max f(Y, 5, v)
Finally, we get

o < inf tr |[(C1(v)Y + Dia(v)S) Y ™1 (Cy(v)Y + Di2(v)S)"
70 S e My, AU [(CUOY  D(S)Y T CUOY + Dia(0)5)']

= ﬂrob

as desired. |
It is also easy to covert the convex optimization in equation (2.2.6) and (2.2.7) to
LMI optimization problem by define two functions:

s zy=| 7 T oS 2= o CL()Y + Dia(v)S

I X Y (v) + STDE, (v) Y
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Then it is easy to show that

Cpoh = inf max tr |ZBy(v)VBI (v ,
(X, R)EWY, | V€V [ VB )}
Y(X,Z2)>0
Brop = inf max inf tr(Z2).

Y >Qo, (sz)ewrvob,z veV ¢(Y,8,Z,v)>0
With such reformulations, the computation of «,.,; and 3,,;, become finite-dimensional LMI

optimization problems.

2.3 State Estimation Problem

The state estimation problem discussed in this section is the dual of state-feedback control

problem.

2.3.1 LQG Optimal Observer for LTV Systems

Here we state linear optimal observer theory of LTV systems, or the well known Kalman
filter theory.
Given the LTV system equation as

z(t)
wt) | | AW Bu(t) Biz(l) Byt) | | di(t) (2.3.1)
(1) ) 0 Ly 0| (1)

| u(t) ]

with the assumption Dy (t) = [0 I,,,] holds without lose of generality. {d{(t) d;(t)} is a

white noise process with intensity ) Vial) for all t > 0. The initial state 2(0) is
Vib(t) Vaalt)
independent of dy (1), dy(t) with & {x(0)} = zo, & {(2(0) - o) (2(0) — 20)" } = Qo.
Consider the observer with given input u(t),t > 0
B(t) = A& () + Ba(t)u(t) — L) [y(t) — Ca()z(1)].

We want to find the matrix function L(7),0 < 7 < ¢, and the initial condition #(0), to

minimize the criterion

0:=&{[o(t) - a(O)[e(t) — 2]}
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The result is given by the following theorem.

Theorem 2.3.1 Given the LTV system in (2.5.1) with statistics of (0) and d(t) as above.

Then the solution of the optimal observer problem is obtained by choosing for the gain matriz
Lo(t) = — [QMCT (1) + Via(t) | Vig' (1), ¥ >0,

with Q(t) be the solution of the matriz Riccati equation with Q(0) = Qo and

Q1) = AMQH) + QAT (1) = QCT (V' (NC2(Q (1) + Via () = Via() Vi () Vi5(1)

where
A(t) = A = Via()Va' (1 Ca(t),
T
) = Bu Baey| 0RO IO
V() Vaa(t) | | BL(Y)
Vlg(t) = Bll(t)Vm(t)-|—B12(t)V22(t).

The initial condition of the observer is chosen to be #(0) = zo and

0=c{le() —a)[z(t) - 2] } = Q).

Proof: The proof is standard and can be found in [KwaS]. |

For LPV systems, we know the real-time value of parameter p, so it is possible
to construct the Kalman filter in real-time. But implementation of Kalman filter relies on
solving differential Riccati equation in real-time and increases computation burden, which

may not be always suitable and necessary.

2.3.2 Quadratic State Estimator for LPV Systems

Given a compact set P C R?, and the LPV system

z(t)
wt) | | Ale@®) Bule®) Bia(p(t)) Bap(t) | | di(t) (232)
y(t) 02(:0(t)) 0 Ly, 0 d2(t)

| ult) ]
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where p € Fp. The statistics of stochastic variables 2(0) and d(t) are given by (2.1.3.). We

want to synthesize parameter-dependent state estimator in the form of

&(t) = A(p(t) (1) + Ba(p(t))u(t) = L(p(1)) [y(t) — Ca(p(t))(t)]

where L(p) is the state estimation gain.

Similar to LTV case, the criterion we are interested in is given by

0:=sup &{[e(t) - (B [(t) - 2(1)]" }.

pEFp

Theorem 2.3.2 Given a compact set P, and a quadratically detectable LPV system in (2.3.2)
and (2.1.3.). Defining the set Y,s as

Vs = {Y €SP max A Y A(p)+ AT(p)Y = CF (p) Vi (p)Calp)

FY [Til) = Taalo)Vig () V()] V] < 0}

where
Alp) = Alp) = Viz(p) V' (p)Calp),
; V; V; BT
Vale) = [Bule) By | 0 || P
Vih(p) Vaal(p) | | Blalp)
Viz(p) = Bii(p)Viz(p) + Bia(p)Vaz(p).
Then

6 < inf tr(Y™1).
Y<Qg', Y€V

Proof: For any Y € V,,, we can construct a state estimator as
(1) = A(p(1)#(1) + Ba(p(0))u(t) = L(p(t)) [y(t) = Ca(p(1))&(1)], (2.3.3)
where L(p) = — {Y_IC’;(,O) -|—‘712(,0)} Vyo'(p). Let & = x — &, by manipulating equa-

tions (2.3.2) and (2.3.3) we get

x(t) = AL(p(1)#(t) + BL(p(t))
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where Ap(p) = A(p) + L(p)Ca(p) and Br(p) = [Bui(p) Bia(p) + L(p)]. Let Q(t) :=
¢ {a()a" (1)} and Q(0) = Qo, then

Vir(p(t))  Viz(p(t))
Vib(p(t))  Vaa(p(1))

If there exists Y € Y,, with Y <@g, then there exists a matrix function A(t) such that

Q(t) = AL(p(1)Q(t) + Q)AL (p(1)) + Br(p(t) Bf (p(t)). (2.34)

d(Y—1

o =0

= A(p)Y T +Y AT (p()) = YOS (p(1)Vay (p(1)) Ca(p(t))Y
+ Vir(p(1)) = Vis(p(t)) Vis ' (p(1)) VIS (p(2)) + A(t)

Vir(p(t))  Via(p(t))

Vib(p(t))  Vaz(p(t))

= Ar(p()Y ™'+ Y TAL(p(1)) + Br(p(1)) [ ] B (p(t)) + A(t).

(2.3.5)

Subtracting equation (2.3.4) from (2.3.5), we get

d _ _ _

2 (T -0m) = AL(e) (v - QW) + (Y7 = QW) AL(e(1) + A@).
So Y1 > Q(t) for all t and any trajectory p € Fp. Finally we have

6 < inf tr(Y ™)

Y<Qg', Y€V

as expected. |

It is also easy to see the similarity between the LTV and LPV state estimation

results.

2.4 Quadratic Output-Feedback Control Design

In this section, we study the output-feedback control problem for LPV systems. Motivated
by separation principle, we design two full order parameter-dependent output-feedback

controllers and derive the bounds explicitly for LQG performance.

2.4.1 LQG Performance of Quadratic Output-Feedback Control

In previous two sections, we studied the quadratic state-feedback control and quadratic
state estimation problem for LPV systems. After that, one question is natural to ask:

Given an LPV system which does not have complete states available for measurement and
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feedback, would it be quadratically stabilized by the combination of quadratic state-feedback
controller with quadratic state estimator? If this is the case, what is the bound for LQG
performance?

The answer for quadratic stabilization is affirmative. The quadratic stability of

closed-loop LPV systems using quadratic output-feedback is given in the following theorem.

Theorem 2.4.1 Given the LPV system Yp in (2.1.2) and (2.1.3.). If there exist X € Xy,
and Y € Y,s, where Xy and Y, are defined in Theorem 2.2.2 and Theorem 2.3.2 respec-
tively, then for any p € Fp, the system is quadratically stabilized by the linear parameter-
dependent controller u(t) = F(p(t))Z(t). &(t) is the state estimator with £(0) = 29 and

F(t) = Ap(£)E() + Ba(p(t))u(t) — L(p(1) [y(t) — Calp(t)F(1)], (2.4.1)
where p € Fp, F(p) = — | BI (p) X~ + Cra(p) | and L(p) = = [Y 1CT (p) + Via(p)| Vi ().

Proof: From assumption Y € Y,s, we have

Vii(p) Via(p)
Vih(p) Vas(p)

where Ap(p) = A(p) + L(p)C2(p) and Br(p) = [Bui(p) Biz(p) + L(p)]. So that

YAL(p) + AL(p)Y +Y Bi(p) Bl (p)Y <0, VYpeP

YAr(p) + AL(p)Y <0

for all p € P. This implies that Ay (p) is quadratically stable for any parameter trajectory
p € Fp. Similarly, the assumption X € X5 leads to

X' Ap(p) + AR(p) X1 < =CE(p)Cr(p) <0, VpeP

where Ap(p) = A(p) + Ba(p) F(p) and CE(p) = [CTi(p) CL(p)+ FT(p)|. So Ar(p) is
quadratically stable for any trajectory p € Fp.

With the control law u(t) = F(p(t))Z(t) and state estimator defined in (2.4.1), the

closed-loop “A” matrix is given by

A(p(t)) B (p() F(p(t))
—L{p(1))C2(p(t))  Alp(t)) + L(p(1))Ca(p(1)) + Bz(p(1)) F(p(1))
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which can be transformed through a constant similarity matrix into

Ar(p(t)) 0
—L{p(1))C2(p(t))  Ar(p(t))

Since matrices Ar(p) and Ap(p) are quadratically stable, and the (2,1) block of the above
matrix is bounded, the closed-loop system is indeed quadratically stable. |

In order to derive LQG performance bound for closed-loop LPV systems, we need
some preliminary results about output estimation (OE) and full control (FC) problems for

LPV systems. The terms and the relationships between these two problems for LTI systems

are explained in [DoyGKEF].

Lemma 2.4.1 Given the LPV full control (FC) system Yp pc as

(1)
(1 o) Bulplt) Bapt) U ol ]|
) =] ey o o ||
dx(t)
yre (1) Ca(p(t)) 0 I [0 0]
| urc(t) |

where p € Fp. The statistics of stochastic variables x(0) and dy(t), d2(t) are given by (2.1.3.).
The system is quadratically stabilized by controller
urc(t) = Kp,pe(p(t) yre (1)

with K%’Fc(p) = {LT(,O) 0} and L(p) = — {Y‘ng(p) -|—‘712(,0)} Vot (p). Furthermore,
for any Y € YV,s with Y < Qg', the bound for closed-loop LQG performance over finite
horizon [0,T] is given by
g = =T -1 T
or < max tr { [T tr (woxo) I+Y ] oh (p)C’l(p)}

where § > 0 is some constant independent of T.

Proof: With the control law upc (t) given above, the closed-loop system is

(1) An(p(t)) Bulp(t)) Bua(p(t)) + Lp(t))
e(t) Cilp(1)) 0 0
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where Ar(p) = A(p) + L(p)Ca(p) and Br(p) = [Bi1(p) Bia(p) + L(p)]. For any Y € Vs,
we have

Vii(p) Via(p)
Vih(p) Vaa(p)

for all p € P. It clearly shows quadratical stability of the closed-loop system from Theo-

A(p)Y ™"+ Y AL(p) + Bi(p) Bl (p) <0

rem 1.2.1. Similar to the proof of Theorem 1.4.2, we get for any Y € Y, with Y < Qg*,

1) o _
or < max tr { [T tr (woxg) I+Y 1] C?(p)C’l(p)}
with some constant § > 0 independent of T'. |

Based on the result for FC case, we can derive the LQG performance bound for

LPV OE problem and the result is stated in the following lemma.

Lemma 2.4.2 Given the LPV output estimation (OF) system Yp o as

_ " -
(t) Alp(t))  Bulp(t)) Buiz(p(t)) Ba(p(t)) I
ety | =] i) o 0 1

da (1)
yor(t) Ca(p(1)) 0 I 0

uOE(t)

where p € Fp. The stochastic assumptions on x(0) and di(t),ds(t) are defined in (2.1.3.).
A(p) — B2(p)Ci(p) is assumed quadratically stable. Let the controller Kp o be

Kpor = Fi(Pprog, Kp rc)

where Kp pc is defined in Lemma 2.4.1 and Pp o is governed by

B (1) Ap(t)) — B2(p(1))Ci(p(t)) 0 [—1 Ba(p(t))] (1)
uwop(t) | = —C1(p(t)) 0 [0 1] yor(t)
yro(t) —Ca(p(t)) I [0 0] upc(t)

with £(0) = Zo. Then Kp o quadratically stabilizes Yp op. For any Y € Vg5 with Y <
51, the closed-loop LQG performance over finite horizon [0,T] is bounded by

—-1~T
or < max tr {Y oh (p)C'l(p)} .
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Proof: Wrap the top part of Pp op with Xp op and let Z(t) := 2(t) — Z(t), the system can

be transformed to

. ) |

z(t) A(p(t))  Bulp(t)) Bizlpe(t)) [ 0] 4

ety | =] ) o 0 [0 1] ' (2.4.2)
ds (1)

yrc (1) Ca(p(1)) 0 I [0 0]
ch(t)

This is exactly in the form of FC problem with £{#(0)} = 0 and & {i(O)iT(O)} = Qo.
The LPV system in (2.4.2) is quadratically stabilized by controller Kp pc by Lemma 2.4.1.

Note the closed-loop system is
Fo(3p o Kpor) = Fo(Xpor, Fo(Ppoi, Kprc)) = Fo(Feo(¥p 08, Pror), Kp ro)
so Kp op quadratically stabilizes ¥p og. Using Lemma 2.4.1 again, we get
-1 ~T
or < max tr {Y oh (p)C'l(p)} .
where Y € Y5 and Y < Qg

Remark 2.4.1 From Lemma 2.4.2, we get the formula of one controller Kp o for OF

problem as
(1) _ | Alp@) + Lip(1))C2p(t)) = Bap(1))Calp(t)) —L(p(t) (1)
uog(t) —C1(p(t)) 0 yor(t)

with initial state (0) = Zo and L(p) := — {Y‘ng(p) + ‘712(,0)} Voot (p).

From Theorem 2.4.1 about the quadratic stability of LPV system using quadratic
output-feedback controller and two lemmas about LQG performance of FC and OE prob-

lems, we can derive LQG performance bounds explicitly in the following theorem.

Theorem 2.4.2 Given the LPV system Xp in (2.1.2) and (2.1.3.), and the control law
given by Theorem 2.4.1. If there exists Y € YV,, with Y < Qal, then the LQG performance

0o Of closed-loop system is bounded by

. < . 177 -1 [RpT -1 Trpr -1
oo < inf - maxir {X71W1(0) + Y1 [BE ()X + Cralp)] " [BI(0) X! + Cua(p)] |
Y <Qo, YEYys

= .



41

Proof: Our proof is a mimic of the one for [DoyGKF, Theorem 1]. Defining a new control

input v(t) := u(t) — F(p(t))z(t), the LPV system Yp can be transformed to

_ " -
@ (t) Ap(p(t))  Bu(p(t)) Biz(p(t)) Ba(p(1)) "
ei(t) | = 0 0 0 '

Cir(p(1)) da(t)
ea(t) 0 0 I
[ V@) ]

Which means

€1 dl
D B ) Rt
€9 (t) d2 (t)
where Yp . is governed by
" [ Ap(p() Bulp(®) Bua(o(t) | | 2100
' = 0 0 dy (t)
() Cirlp()
I 0 0 ds (1)
with 21(0) = 2(0), and Up is
A1) Balp(t)
wg(t) _ 0 wg(t)
&(t) Cir(p(t)) ; v(t)
with 22(0) = 0. Note that é(¢) is uncorrelated with €(¢).
From the assumption X € X,,, we have
Ap(p)X + X Ap(p) + XCE(p)Cr(p)X <0 VpeP, (2:4.3)

so Ap(p) is quadratically stable. Following the proof for Theorem 1.4.1 gives

R, (1 ~
(3 wore) s - ot )
for any X € A,,;. Also from equation (2.4.3), there exists some 4 less than 1 by continuity,
such that

X Ar(p) + AR )X+ S CEpICr(p) + FT(p) (1= 55 ) Flp) <0
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for all p € P, which is equivalent to

_ L1 . | 0
XM Ap(p) + AR(P)X T+ 5 CE(P)Cr(p) + | X7 Balp) + 5 CE(p)
I
—1
1 roe 1
* 1—5—2[0 1] By (p) X +5_2[0 INCr(p)| <0

I

for all p € P. So Up is a contraction mapping from L5* — LY for any p € Fp (see [Bec]),
that is

[ e iar <o [ < [,

Now, look at system Xp , which generates signal v(¢):

e
0 A Bulelt) Balptt) B ||
o) | = | =Fl)) 0 0 1

ds (1)
y(t) Calp(t)) 0 1 0

| ul®) ]

It is easily to see that an admissible controller Kp quadratically stabilizes original LPV
system Xp if and only if it quadratically stabilizes Yp ,. But Xp, is in the form of OE
problem and A(p) + Ba(p)F(p) = Ar(p) is quadratically stable. Using Lemma 2.4.2 and
Remark 2.4.1, we get the quadratically stabilizing controller Kp for ¥p as

i(t) Alp() + L(p(0)Ca(p(t)) + B2 (p(1) F(p(t))  —L(p(t)) | | &(t)
u(?) F(p(1)) 0 y(t)

with #(0) = Zo, which is the same as the state estimator formula in (2.4.1). So we get from

Lemma 2.4.2, for any Y € Y, with Y < Qg",

£ {%/OT Hv(t)H2dt} < max tr [Y U FT () F(p)]
Then

o = g{%/OT (el (@er(t) + ] (t)ea(t)] dt}

_ %E{AT

T
é(t)|)?dt -I—/ Hé(t)HZdt} (€, € are uncorrelated)
0
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1 T
< =
< TE{A

< r;lea;(tr {X“l [% (zoon -+ Qo) -+ 1711(,0)] -+ Y_IFT(p)F(p)} .

cwpPas [ ool

Plug in the formula for F' and take limit on both sides of above inequality, we finally get

o < . —17 -1 [RT -1 Trpr -1
7o int st (X7 () 4 Y (B ()X 4 Cuolp)] [BE ()X + Cunlo)]
Y<Qy '\ YeYy:

as desired. |

2.4.2 LQG Performance of State-Feedback Control plus Kalman Filter

In order to establish the stability and bound LQG performance for LPV systems with output
feedback control using Kalman filter, we need to make one additional assumption, which is

necessary to guarantee the closed-loop system stability over infinite horizon.

(A5) for any p € Fp, the pair [A(p(-)), Bi1(p(+))] is stabilizable as an LTV system (i.e.
exponentially stabilized using a bounded state feedback gain F(¢), see [RavPK] for
details).

It is known from [ShaAl] that the optimal state estimator can be implemented
in linear parameter-dependent systems since the observer gains are causal functions of the
state-space data. On the contrary, the optimal regulator for LTV system depends anti-
causally on the system model, so we are forced to resort to a sub-optimal regulator. The
stability of this configuration (quadratic state-feedback + optimal state estimator) is given

next:

Theorem 2.4.3 Given the LPV system Yp in (2.1.2) and (2.1.3.). If there exist X €
Xys and Y € YVys, where Xy and Y,s are defined in Theorem 2.2.2 and Theorem 2.3.2
respectively, then for all p € Fp the system is exponentially stabilized (on infinite horizon)
by the linear parameter-dependent controller w(t) = F(p(t))(t), where &(t) is the state
estimation from the Kalman filter defined in Theorem 2.3.2.

Proof: From the feasibility assumption of Y € ), we have

Vii(p) Via(p)
Vih(p) Vas(p)

YAL(p) + AL(p)Y +Y Bi(p) BL(p)Y <0
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for all p € P. So that
Y [A= (YT 4+ Vo) Vig'Co| + [A = (Y71CF (p) + Vi) Vi ' Ca] ¥ < 0

for all p € P. This implies that for any trajectory p € Fp, the pair [A(p(-)), Ca(p(+))] is
detectable as an LTV system (see [RavPK]).

The optimal state estimate (t) evolves as 2(0) = Zg and

(1) = Alp()#(t) + Ba(p(t))u(t) — L°(p(t)) [y(t) — Ca(p(t)2(1)]
where L°(p) := — [QC’Q (p) + Vialp )} Vo' (p), and Q(t) is the matrix satisfying the Riccati
differential equation with Q(0) = Qo and
Q) = Alp(t)Q1) + QAT (p(t)) + Via(p(t)) = Viz(p(t) V' (p(£) Via(p (1))
—QMCT (p(1)Va' (p(1)Calp(1)Q(1)
Recall from optimal estimation theory that & {(m(t) —&(t)) (x(t) — x(t))T} = Q(t). The

detectability of [A(p(.)), Ca(p(.))] guarantees existence of bounded matrix ¢(¢) for all ¢ > 0.
From [RavPK], Assumption (A5) allows us to conclude that the LTV system governed by
Alp(t)) — QUOCT ()R (p(1))Ca(p(t)) s exponentially stable.
The remaining part of the proof is similar to the proof of Theorem 2.4.1. |
The next lemma is useful in the derivation of the performance bound for LPV

systems using output-feedback control with Kalman filter.

Lemma 2.4.3 Given Vi(t) > 0, Vo(t) > 0 on the interval [0,T]. If Q(t) is the solution
with Q(0) = Qo > 0 and

Q) = AMQM) + QM)A (1) + Vi) — QT (V5 (HC Q)
and there exists Y € 8" with Y < Q5" satisfying

YA(t) + AT ()Y — CF () V5 () C2(t) + YVA(H)Y <0,
then Y= > Q(t) > 0 for all t € [0,T].

Proof: From the assumption on Y, there exists a time-varying matrix V;(t) > Vi (t) such

that

—(Y H=0=A0)Y 1+ YA + Vi(t) - YT )V L) C )y T
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Let K(-) be a bounded matrix, consider two Lyapunov equations on the finite horizon [0, 77,

Qi(t) = (A + KOCE)Qu(t) +Qu(t) (A1) + K(C ()" + Vi(t) + K () Va() K (1),
Q2(t) = (A1) + K(OC() Q2(t) + Q2(1) (A1) + K()C ()" + Vi(t) + K () Va() K (1)
with initial conditions @(0) = Qo and Q2(0) = YL

Let ®(¢,s) be the fundamental matrix associated with A(t) + K (¢)C'(t). We get

the solution of above two Lyapunov equations as follows [Won]:
Qi) = ®(t,0)Qud7(t,0) + /0 T@(t, ) (Vilr) + K(Va(r) KT (7)) @7 (t,7) dr,
Q2t) = @, 0y o7 (t,0) + / T@(t, ) (Vi(r) + K(Va(r) KT (7)) @7 (t,7) dr.
0

It is easy to see that for the same K(t), Qq(t) > Qq(t) for any t € [0,T]. Let K(t) =
~Y1CT()V; 1 (t), the second Lyapunov equation then yields a constant solution Q(t) =
Y~1 and

Y7 > Qi) g0y (2.4.4)

But the first equation has the optimal solution Q(¢) with K(t) = —Q(t)CT(¢)V; () and
generally K (t) # K(t). From [KwaS, Lemma 3.1], we get

Q1) gy = QLY. (2.4.5)

Combining equations (2.4.4) with (2.4.5), we get Y1 > Q(¢) for all ¢ € [0,T]. From the
assumptions on Vj and V3, it is easy to show from the first Lyapunov equation that Q(¢) > 0
for all t € [0,T7]. |

Theorem 2.4.4 Given the LPV system Yp in (2.1.2) and (2.1.3.). If there exist X €
Xys and Y € Y,s with Y < Qg then the exponentially stabilizing control law given in
Theorem 2.4.3 yields the closed-loop system performance o, bounded by

. —1¢7 - - T -
oo < Xlen;gs Iglea7;<tr{X Wi+ Y B (p) X7 + Cia(p)]” [BY (p)X 1+C'12(p)]}

Y<Qi YeYys
= .

Proof: We have shown in Theorem 2.4.3 that the control law u(t) = F(p(t))Z(t) exponen-
tially stabilizes ¥p for any p € Fp. Using variable transformation @ := u + Ci2(p)&, the
cost criterion becomes

T T
op = sup 5{/0 [« ()T (p(1)Cra(p(t))x (1) + a” (t)a(t)] dt} +/0 tr [CTa(p(1) Cra(p(1)Q(1)] dt.

pEFP



46

In terms of new control %, the observer equation becomes

(1) = Alp()#(t) + Ba(p(t))alt) — LO(p(1)) [y(t) — Ca(p(t))2(1)]
with A(p) := A(p) — Ba(p)Cia(p). Also we have

{2 (OCH(pM)Cra(p(t)z()} = £ {2 ()CT (p(D)Crap(t)z (1)} +tr [CTi(p(1)) Cra (p(1) Q)] -

So the criterion can be rewritten as

pEFP T

or = suple{ /OT T () Cralp(t)i () + i (1)ia(t)] dt}

+ E}?% OT”{[Cﬁ@(t))Cn(p(t))+c£< (1)Cralp(1)] Q1) } dt.

As expected, the first term depends on state estimate Z(¢) and the control, while the last
term is independent of the control applied to the system. The first part of the cost is the
well-known stochastic linear regulator problem since y(t) — Cq(p(t))2(t) is a white noise
process with intensity Vaa(p(t)) (see [KwaS]), and the complete state #(t) is available. In
our problem formulation, we do not have future knowledge of the time variations in the
state-space matrices, hence we cannot use the optimal stochastic linear regulator solution.
Instead, we use a sub-optimal linear control law @(t) = —B¥ (p(t)) X ~'&(t), which leads to

equivalent control u(t) as

u(t) = — [BI (p(1) X~ + Cralp(t) ]| (1) = F(p(£)2(1).

and &(-) is governed by

i(t) = Ap(p()(t) = L°(p(1)) [y(t) — Calp(1))2(¢)].
From the assumption X € X, we have

Ap(p)X + X AL(p) + XCE(p)Cr(p) X < 0
for all p € P. From the proof for Theorem 1.4.1 we get

£ { / [T OCH () Cualp ()i 1) + 7 ()a(0)] dt}

<tir

X! (T + [ LWl p )2 (p(0) dt)] ,
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so that the criterion is bounded by

1 1. T E— T T —1 T o\
or < sup = tr{ X 2oz -I—/ X (QC’2 -|—V12) Vs (QC'2 -|—V12) dt
pEFP 0

T
+ [ (chen+chen) @ dt}.

Using the Riccati differential equation of Q(¢) and Lemma 2.4.3, we get

1 T -
op < sup — tr {X_l (fofoT +Qo) -I-/ X"Vt (p(t))dt
PEFP TY 0

T T
+1A YL (BE (p(1)) X"+ Cra(p(1)) (B%@@»X‘k+cm@@»)w}.
Note that the above inequality is true for any X € X,; and Y € Y, with Y < Qg*!,
[l o ~
or < rglea%( tr {X ! [T (wowg + Qo) + V11(,0)]

T
+ Y7 BI(p)X 7+ Cra(p)] bﬂmx*+cmmﬁ-
Take limit on both sides of above inequality, we have

. _1g _ _ T _
Too < Xlenggs 151637;("{)( Wi(p) + Y B ()X T+ Ciz(p)] [BI (9)X 1+012(P)]}-

Y<Qit YeYy,

2.5 Computation of the Bounds and Comments

In this section, we first discuss the general properties of the LQG performance bounds given
in Theorem 2.4.2 and Theorem 2.4.4. Then we provide a procedure to compute the bounds.

Finally, we give comments on tightness of the bound.

2.5.1 Convexity and Complexity Issues

We should point out that for both output-feedback controllers, the same LQG performance
bounds resulted. Now we will figure out how to compute these bounds.

By Schur complement, it is easy to show that the sets X,,, ),s; define convex
constraints for X,Y respectively. So the bound v is a convex function of X for fixed
Y and convex function of Y for fixed X, but is not convex of X,Y jointly. This leads

to some difficulty in formulating convex optimization for its computation. Furthermore,
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the minimization in 7 includes infinite number of objectives to be traced, which could
be computationally very expensive. So we would like to look for a bound for v. We
propose an “one-step” scheme to compute some bound of 4. This bound is represented
as the minimization a function, which is convex of X and Y separately and has infinite
convex constraints of parameter p. Generally, it can be “minimized” with finite number of

constraints by gridding of the compact set P.

Theorem 2.5.1 Given the compact set P. With the procedure:

1. First, do the convexr minimization about variable X,

— -1
n = Xlen/\f?gstr (X7,

pick an X which is feasible, and yields a cost close (as close as we want) to 1.

~ N T ~
2. Let Wy > Vir(p), Wa > [BE(9) X"+ Calp)] [BY (9) X"+ Cualp)] for atl p € P.

Next, do the second convex optimization about variable Y,

W= inf tr (X_lWl + Y_le) .
Y<Qyt, VeV

similarly, pick feasible Y which ytelds a cost close to w.
Then the bound for ~ is given by

v <tr (X"lWl + Y‘le) = Ysub-
Proof: It is easy to show that 7 is convex function of X, and ¢ is convex of Y. From
assumption, we have X € A, and Y € Y,, with ¥ < Q5*. So

. 17 _ _ T _
v o= inf o max tr{X Wi(p) + Y [BS ()X T+ Cia(p)] [Bs (9)X 1+012(p)]}

Y<Qy' Y €Yys

N - o T N
o { X700+ [BE X 4 Cot)] ' [BE )X+ Gt
Y<Qy! YeY,, PEP

< tr (X-lwl +Y‘1W2)

IN

as desired. |
With the standard trick of appending variables, it is easy to convert the minimiza-
tions for n and w in Theorem 2.5.1 to LMI optimization problem.
Under some assumptions on state-space data, the optimization of 7, will become

finite number constraints convex problem. The assumptions are:
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e The parameter set P is convex polytope whose finite set of extreme points is denoted

by V,
o By(p), Ca(p), Vii(p), Via(p) and Vaa(p) are constant matrices,

e The parameter dependence of other continuous functions A(p), Bi1(p), Bi2(p), C11(p)
and Ciz(p) are affine on p € P.

The finite-dimensional optimization procedure for computing = is given in the following

way:

Theorem 2.5.2 Given a convex polytope P with its finite set of extreme points denoted by

V, and simplifying assumptions given above. Define finite constraint sets Xg‘;, ,')i;’s as
Xg‘; = {X S
maxA s [A@)X + X AT(v) = BB + XC(0)Cui(v) X | < 0} :
,')i;)s = {Y S rqflea‘zc)\max {Yfl(v) + AT(U)Y - 02TV2;102
HY Vi (v) = Via (0) Vi3 Vib(0)| Y] < 0} .

Then we can show Xy, = Xg‘; and Yys = VY where Xys and Yy are defined in Theorem 2.2.2

gs?
and Theorem 2.3.2 respectively. Furthermore, with the same procedure as Theorem 2.5.1

but over finite constraints convex sets Xg‘;, Xg‘;.

Proof: The proof is straight forward by itself. |

Remark 2.5.1 Further assume that By, Biy and C15 are constant matrices, then we may

_ - . T .
pzck Wi = Vi and Wy = (BQX_I + 012) (BQX_I + 012).
Note this “one-step” scheme of computing bounds vsus, 7Y, is not guaranteed to
find their global minimums. Typically, they only converge to local minimum.
2.5.2 Comments

Here we will study the LQG performance for LTI systems, and discuss its relationship with

our bound 74, in this case. First, let us give the notion of infimum of a set.

Definition 2.5.1 A subset W C S}*" is said to have an infimum if there exists a matrix

W € 85" with the properties:
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o foranyW e W, W > W,
o there exists a sequence of matrices {W;}:2, € W, such that W; — W.

It is clear that if such a matrix exists, it must be unique. In this case, we denote inf W := w.

Also note that inf tr (W) =tr (W) and inf tr (XW) = tr (XW) for any X > 0.
Wew Wew
The following Lemma is a known fact and listed here for clarity.

Lemma 2.5.1 Suppose that the pair (A, B) is stablizable and the pair (A, C') is detectable,
then the Algebraic Riccati equation PA+ AT P—PBBT P+CTC = 0 has a mazimal solution
(see [GohLR]), which we denote Py, and A — BBT P, is stable. Let the set W be

Wi={P eS8 : Apan [PA+ATP - PBBTP+CTC| <0}
Then W has an infimum and in fact inf W = P, > 0.

Proof: As (A, B) is stabilizable and (A,C) is detectable, it is easy to show that the
maximal solution Py > 0 and (A — BBTP_|_) is stable. For any feasible P € W, we define
PA+ ATP4+ PBBTP +CTC := —W < 0, it equivalent to

T
P(A-BB"P)+(A-BB"P) P=-W-PBBTP-CTC <0 (2.5.1)
So (A - BBTP) is a stable matrix. Also Py satisfies:

PLA+ATP, — P .BBYP, +CTC =0,
that is

Py (A—BBTP)+ (A—BBTP) Py =-P.BBTP - PBBTP, + P,BBTP, —CTC. (252)
Subtracting equation (2.5.2) from (2.5.1) gives us

(P—P)A+ AT (P-P,) - PBB"P+ P, BB P, = -W,
that is
(P~ Py) (A-BBTP) + (A - BBTP)T (P-Py)=-W —(P-P.)BBT (P - P;) <0.
We have shown (A - BBTP) is stable, it follows that

P> Py.
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Also we know from [GohLR] that there exists a sequence {F;}:;2, € W such that
PA+ATP, - PBBT'P, +CTC <0,

P, > Py, fori=1,2,---and lim P, = P, By definition of the infimum of W, we have

1—>0C

infW="P, >0. |
For an LTI system
i | [ A4 By Bw B || ) ]
eit) | | Cu 0 0 0 di(t)
ea(t) - Ciz2 0 0 I ds (1)
Ly | | G2 0 0 || ut)

The initial state z(0) is independent of white noise dy(¢), da(t) with

E{x(0)} = o,
{(@(0) = 70) (2(0) - 70)" } = Qo,
() AOEAGIES e 5(t1 — t)
dy(t1) VE Vo

where Qg > 0, Vi1 > 0 and V35 > 0. With optimal regulator and observer, we know from
[KwasS]
- T
Ono = tr [P+V11 + Q_|_ (BgP+ + 012) (BgP+ + 012)] .
P, and @4 are the stabilizing positive semi-definite solutions of the following algebraic
Riccati equations:
P A+ ATP, — P BBI P, +CLCy = 0,
AQ+ + Q+AT — Q+C§V2_2102Q+ + ‘711 — ‘712V2_21‘71€ = 0.
where
A = A-ByCpy, Ai=A—-VpV5'Cy,
Vit Vio B},
Vit = [Bu B2l )
VL Vg B,
Vig = BuVia+ BiaVas.
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Furthermore, define

Wi = {PeSP™ s N [PA+ATP — PByBI P+ | < 0},
P = infW,

Wo = {QEST™: Aaw [AQ+ QAT — QCIVE'CoQ + Vit — ViaVi' V| < 0}
Q = infW,.

Note that P, () are well-defined, since the sets Wy, W, do have infimums in LTI case. From
Lemma 2.5.1, P = P, and Q= 4. Then

O = tr [PVH +Q (ng+012)T (ng+012)] .

Picking Wi = Vi;. For arbitrarily small ¢, our “one-step” scheme given in Theorem 2.5.1

. . . T . .
yields X ! close to P, then selecting Wy = (B%WX‘1 + 012) (B%WX‘1 + 012), we get Y1
close to Q such that

Too 2 tr [X‘lffll-l—ff‘l (BgX_1+012)T(BgX_1+012)] — €
=t [X7TW + VT
= Ysub — €.

This shows that our LQG performance bound s, is actually tight in LTI case.
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Part 11

Induced Ly-Norm Control of LPV

Systems
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Chapter 3

Analysis of LPV Systems Using
Parameter-Dependent Lyapunov

Functions

In this chapter we study a class of LPV systems which have bounded parameter variation
rates. The previous results in [BecP], [Bec], [ApkG] are based on a single quadratic Lya-
punov function approach, and are only suitable for LPV systems with arbitrarily fast param-
eter variation. By using a parameter-dependent Lyapunov function (PDLF), we formulate
an analysis test which is able to exploit the bounded parameter variation information. The
test is the generalized Scaled Bounded Real Lemma and leads to a less conservative result
for the class of systems we are interested in.

In §3.1, we give a simple example to motivate the usefulness of PDLF for LPV sys-
tems. In §3.2 we generalize the quadratic stability notion to parameter-dependent stability
of LPV systems by parameter-dependent Lyapunov functions. Finally, in §3.3 we define an
induced Lo-norm performance measure for LPV systems with bounded parameter variation
rates, and formulate a sufficient condition to test if the induced Lgo-norm of an LPV system

is less than some v > 0.
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3.1 Motivation for Using Parameter Dependent Lyapunov

Functions

In this section, we will study an example which can not be quadratically stabilized but
otherwise is possible by using parameter-dependent Lyapunov function.

Consider the linear parameter-dependent system (modified from [MeyC])

B () = Alp(t))2(t) + Bu(t), (3.11)
where
| aj1 aiz  cos(p) sin(p) | _ 0 0 |
A(p) = a1 azy —sin(p) cos(p) B 0 0 (3.12)
0 0 -7 0 T 0
| 00 0 -7 ] 07

This represents a 2-input system which includes identical actuator dynamics, a time-varying
coupling matrix, and 2nd-order plant dynamics.
The quadratic state-feedback stabilization problem is: find a continuous function

F(p) and a matrix P € $**4 P > 0 such that

[A(p) + BE(p)]" P+ P[A(p) + BF(p)] < 0 (3.1.3)

for all p € [—7,7]. If such matrices exist, then the parameter-dependent state-feedback
law u(t) = F(p(t))x(t) would render the closed-loop system exponentially stable for any
piecewise continuous trajectory p(-).

a11  G12

Unfortunately, if the matrix Ay := is unstable, then the system (3.1.1)

azy @22
can not be quadratically stabilizable by parameter-dependent state-feedback control. To

see it, suppose such matrix F(p) exists, then inequality (3.1.3) must hold for both p = 0
and p = m, that is

[A(0) + BF(0)]" P+ P[A(0)+ BF(0)] < O,
[A(x) + BF(m)]' P+ P[A(x) + BF(x)] < O.



56

Multiplying both equations by 1/2 and adding them up, we get

T

All 0 A11 0
P+ P < 0.

* X * X
It is clear that no positive definite matrix P satisfies above inequality if A;; is unstable
[Vid]. So we get a contradiction.

The problem is that there are p(-) trajectories which allow the upper (1,2) block
of A(p) in (3.1.2) to switch between I, and —I, arbitrarily fast. So, regardless of the
bandwidth 7 of the actuators, the rapidly varying parameter p(t) do not allow for quadratic
stabilization. Hence, all of the methods in [BecP], [Bec] and [ApkG] are not applicable.

However, a simple singular perturbation argument suggests that the state-feedback

F(p) = wosle) —einip) (=712 — A1) Oz (3.1.4)

sin(p)  cos(p)
should work, that is, exponentially stabilize LPV systems in equation (3.1.1) with p(+)
trajectories satisfying
) <
max|p(t)] < B(7),
where B(-) is some monotonically increasing function of 7. In other words, if there is
a known rate bound on p(t), then exponentially stabilizing, parameter-dependent state-
feedbacks do exist. It is possible to construct a parameter-dependent Lyapunov function

which demonstrates the stability of the closed-loop system.

0.75 2.0
Example 3.1.1 Given the LPV system in (3.1.1)-(3.1.2) with Ay; = , and

0 0.5
the state-feedback control law given by (3.1.4). Show the stability of the closed-loop system

using PDLF.

Solution: Note that Ay is unstable because of its positive eigenvalues. Define P(p) :=

Py + Py cos(p) + Pysin(p), and PDLF as

Vi(z,p) =" P(p)a.
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Then the closed-loop system with bounded parameter variation rate |p| < v is exponentially

stable if P(p(t)) > 0 and

o= {[A<p<t>> + BE(pO)]” P(p(t)) + P(o(t)) [A(p(1)) + BF (p(1)] + Cﬁl—f} v(1)

= ' (1) {[A(p(t)) + BE (p(t))]" P(p(t)) + P(p(t)) [A(p(t)) + BF (p(t))] + PC;—];} z(t) <0

for all admissible trajectories p(-). Note above equation holds if and only if there exists
P(p) > 0 and
T dP
[A(p) + BE(p)]" P(p) + P(p) [A(p) + BF(p)] £ vy <O (3.1.5)
for all p € [, 7]. Choose v = 1,7 = 3.75 and v = 0.5, using feasibility solver (FEASP) in

[GahNLC], we solve inequalities (3.1.5) with 20 gridding points by

| 7319.1  6525.7 —1.7667 3.3288 ]
o 6525.7  8746.1  11.729 —-9.3291
S —-1.7667 11.729  1058.6  3.1193 ’
| 3.3288° —-9.3291  3.1193  1061.2 |
| —44.493 5.2838 19994  926.67 ]
o 5.2838  31.857 2416.3  1354.8
L 1999.4  2416.3 3.9755 —3.7928
| 926.67  1354.8 —3.7928 —9.5246 |
_ 13.353 15422 -921.78 2001.7 |
. 15.422 —15.564 —1346.9 2418.1
S —-921.78 —1346.9 4.5734  7.0145
| 20017 2418.1  7.0145 —3.9264 |

Then we check condition (3.1.5) at 360 points (every 1°). The maximum eigenvalue at
these points ranges from —3.04 to —5.95, which clearly indicates that the resulting solution
is feasible over the whole parameter interval. So the LPV system with parameter variation

|p| < 1 is exponentially stable, and the stability is verified by the PDLF defined above. B
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3.2 Parameter-Dependent Stability of LPV Systems

Before defining parameter-dependent stability for LPV systems using PDLF, we would like

to introduce the concept of the parameter v-variation set.

Definition 3.2.1 Parameter v-Variation Set

Given a compact set P C R®, finite non-negative numbers {v; }i_, with v := [v; --- v,]’.

We define the parameter v-variation set as
‘7:713 = {,0 S Cl(RaRs) : p(t) €P, |:02| TNRES 17"'78}7
where C1 stands for the class of piecewise continuously differentiable functions.

The LPV systems studied in this part are slightly different because of their state-

space data dependence on parameter and its derivative, and they are defined as follows:

Definition 3.2.2 LPV Systems with Bounded Parameter Variation Rates
Given a compact set P C R®, and the continuous functions (A, B,C, D) : R°xR* — (R"*",
R™*ma Rrexn RMeX"d) . An n-th order LPV system with bounded parameter variation rates

Yp is given by
= 5 (3.2.6)

where p € Fp, x(t) € R”, d(t) € R" and e(t) € R™.
Addition to the notations in Definition 1.1.3, we have

o Forty =0, x(to) = 0, the causal, linear operator G, : Lyt — Ly*., is given by

(1) = [ Clo(0) o), (1,7 Blp(r), pr) () + Dlp(t), (00,

to

o The set of causal linear operators described by the LPV system (3.2.6) is denoted as
Gry = {G,:p € Ff).

Recall that the definition of quadratic stability involves a single quadratic Lya-
punov function. Using PDLF, we can establish the notation of parameter-dependent sta-

bility, which is the generalization of quadratic stability concept.
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Definition 3.2.3 Parameter-Dependent Stability
Given a compact set P C R?, finite non-negative numbers {v;};_,, and a function A €
CO(R? x R*, R"*"™), the function A is parametrically-dependent stable over P if there exists
a continuously differentiable function P:R*—S8"*"™ such that, P(p) > 0 and
o oP
AT (p, B)P(p) + P(p)Alp, B) + > (ﬂia—p) <0 (3.2.7)
i=1

3

forallp € P and |3;| < vy 0 =1,2,---,s.

Remark 3.2.1 If there are no bounds for parameter variation (v; — oo, 1 =1,---,5), by
restricting P to be a constant matriz, the notation for parameter-dependent stability goes

back to quadratic stability. Here we only consider finite {v;}>_,.

In equation (3.2.7), the left hand side of the inequality is strictly less than zero.
Next, we will show that it is actually uniformly negative definite by compactness and

continuity.

Lemma 3.2.1 Given a compact set P, and the LPV system

#(1) = Alplt), (1)) (1), (3.2.8)

where p € Fp. If the function A is parametrically-dependent stable over P, then there exists

some & > 0, such that

AT(p(t), (1)) P(p(1)) + Pp(£)) Alp(1), (1)) + % < =61,

for all trajectory p € Fp.

Proof: For compact set P and finite {v;};_,, the left hand side of equation (3.2.7) is
uniformly negative definite by continuity of function A. So there exists a scalar § > 0, such
that for all p € P and |5;| <wvy, 1=1,2,--+,s
> oP
AT (0, 3)P(p) + P(p) Alp. B) + Y (ﬁiap) < 1, (3.2.9)
i=1 ?

Now, consider any trajectory of p(-), which satisfies p(t) € P and |p;(¢)| < vy, 1 =1,2,--+,s
for all ¢. From equation (3.2.9), we get

AT (p(0), (1)) PLp(0)) + PUp(0) Alp(), 1)) + Z (f’%)

= AT(pl1), BV P (1)) + P(o(0) Alplr), 1)) + 5

S _5In
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holds for any p € Fp. |
Similar to Lemma 1.2.1 of quadratic stability, the following lemma shows that
parameter-dependent stability gives a strong form of robust stability for LPV systems with

bounded parameter variation rates.

Lemma 3.2.2 Given a compact set P, and the LPV system in (3.2.8). If A is parametrically-
dependent stable over P, then there exist constant scalars vi,v2 > 0 such that for any

peFy,
19,(t, to)[| < 71 el (=)L,

Proof: Define parameter-dependent Lyapunov function V: R" x R* =R as
V(z,p):= 2l P(p)z,

where the function P(-) establishes parameter-dependent stability of A. By the compactness
of set P and continuity of function P(p), there exist Apax, Amin > 0 which denote respectively

the maximum and minimum eigenvalues of P(p) over P, such that
)\mionHZ S V(xap) S >\max||x||2a (3210)

where x € R" and p € P. For any p € Fp, the time derivative of V(z(t),p(t)) along
trajectories of LTV system (3.2.8) is

d . .
TV (), p(0) =" (@1) | AT (p(1), o) P(p(1) + P(p(D)) Alp(1), (1)) + —-| #(2).

By Lemma 3.2.1, there exists some § > 0 such that

AT (1), 5(0)) Plp(1)) + P(1) A(pl0). 1)) + o < 51,
and
SV (0).p0) < 6 e 0)]. (3:2.11)

From equation (3.2.10), — ||z||* < /\;ixV(x, p). Plug it into equation (3.2.11), we get

d o

GV o) < -5

For any @ # 0, V(z, p) is non-zero. So above equation can be rewritten as

Vi), o) o
Vo) =
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Then we integrate both sides of this equation from ¢y to ¢, which leads to
V(@ (1), p(t) < V(2 (to), p(to))el 2010
where v, := 0/(2Amax). Using equation (3.2.10) with the above equation, we get
Amin [[2 (D)* < Amax || (to)||* el 20~ (3.2.12)

for any p € Fp. Furthermore, the above inequality trivially holds for zero initial condition.

Note that z(t) = ®,(¢, o)z (to) for all z(tg) € R". From equation (3.2.12), we finally have

>‘max — _
1,1, t0) | < 4 T2 el 2000

min

for all p € Fp. Define vy := ()\max/)\min)%, and the result follows. |
With the definition of parametrically-dependent stable function in mind, we come

up with the parameter-dependent stability concept for LPV systems.

Definition 3.2.4 Parametrically-Dependent Stable LPV System
For an LPV system Xp in Definition 3.2.2, if function A is parametrically-dependent stable,
then Xp is a parametrically-dependent stable LPV system.

3.3 Induced L,-Norm Performance and Analysis of LPV

systems

In this section we define a performance measure for the LPV system described in Defini-
tion 3.2.2 in terms of an induced Lg-norm from the disturbance to error signals, and derive
a sufficient condition that guarantees p is parametrically-dependent stable and achieves
a prescribed induced Lg-norm performance. This condition generalize the Bounded Real
Lemma and is written as an linear matrix inequality (LMI) of some continuously differen-

tiable function.

3.3.1 Induced L;-Norm Performance Measure

The following lemma establishes the existence of a finite upper bound for the induced Lo-
norm over the set of all causal linear operators described by a parametrically-dependent
stable LPV system. The proof follows from classical results in linear time-varying (LTV)

systems theory [DesV].
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Lemma 3.3.1 Given a parametrically-dependent stable LPV system Xp in (3.2.6). There

exists a finite scalar M > 0, such that for zero initial conditions z(0) := 0,

“ [le]]2
p  sup
pEF ||dllo 0, deL, [Id]]2

<M < oo

Proof: For any p € 7} with initial condition 2(0) = 0 and input d € Ly, we have

t
e(t) = /0 Clp(t), p(6)) @y (t, 7) B(p(7), p(T))d()dT + D(p(t), p(t))d(1).
Since functions B,C' and D are continuous on the compact set P and {v;};_, are finite

numbers, there exist finite scalars kg, k¢, kp > 0, such that ||B(p, p)|| < kg, [|C(p, p)|| < kc
and ||D(p, p)|| < kp for all p € Fp. Therefore

el = | [ Clo. o007 Blo(r) prdr) dr -+ Dip(a), ) dio)
< ke [0, D] dr + ko (o)

! 1 1
= kBkc/O 19, (t, T)IIZ[|d(T) 1@ (¢, T)[|2dT + kpl|d(2)]]-

Applying Schwarz inequality to the first term of the left hand side, we get

el < kske | [ 1@, D dEIPar| | [ llar]” + kol @33

Since Yp is parametrically-dependent stable, there exists v, v2 > 0, such that ||®,(¢, 7)|| <

=71 by Lemma 3.2.2. Integrating both sides from 7 = 0 to 7 = ¢, we get

v el
f Y1

[ est il < 22 i e o, o).
0 Y2

Plug it into equation (3.3.13), then

letol < kako /2 [ @t llr)IPar] -+ kol

Square and integrate both sides on [0, 00), we get

L {’“Bkcﬂ:; I \@p(t,r)uudv)u?drf + kpud<t>u}2 i

2k 2 [ [,y Par e i [t s

72 Jo
Exchanging the limits of the first integration, and note [ ||®,(t, 7)||dt < 71/72, therefore

p)/ oo T o0 o0
lely < 2 {kpRe 2 [T [T o, r)lae] NdolPar + i, [ i) Par

Y2

2
2 (kBkcz— +k%) )3
2

lel13

IN

IN

IN
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[SIE

holds for all p € F%. If we define M := [2 (k§k2~i/v3 + k%,))]?, then

. el
p sup

<M < oo
pEFY ||dlla£0, deLs [14]]2

Based on the observation in Lemma 3.3.1, we can define the induced Ly-norm for

a parametrically-dependent stable LPV system.

Definition 3.3.1 Induced Ly-norm of Parametrically-Dependent Stable LPV Sys-
tems

Given a parametrically-dependent stable LPV system Xp in (3.2.6), for zero initial condi-
tions x(0) = 0, define the induced Ly-norm as

lellz
E

|Grylliz = sup  sup (3.3.14)

PEFY ||d]|270, deL, [Id

Therefore, the Lo-norm level for an LPV system, represents the largest ratio of
disturbance norm to error norm over the set of all causal linear operators described by the
LPV system. For a given parametrically-dependent stable LPV system Yp we denote this

norm pictorially as shown in Figure 3.1.

e(t) ~— B, F—dt)

02

Figure 3.1: Induced Ls-norm for the parametrically-dependent stable LPV
system Xip.

3.3.2 Analysis of LPV systems with Induced L,-Norm Performance

The following fact is useful in the proof of Theorem 3.3.1, and it can be shown similarly to

[Bec, Lemma 4.3.2].

Lemma 3.3.2 Given a parametrically-dependent stable LPV system Yp in Definition 3.2.2,
for d € Ly and 2(0) € R,

lim z(t) = 0.

t—00



64

Proof: Given € > 0, note that for any x(0),

[l @) = {12, (t, 0)z(0)[| + /¢> (t,7)B(p(7), p(r))d(T)dr | -

Using Lemma 3.2.2, there exist 1, {3 such that the first term is bounded by ¢/3 for all ¢ > ¢y,
and the second one is less than 2¢/3 for all ¢ > t3. Choose T' = max (¢1,t2), then ||z(¢)|] < ¢
for t > T'. The proof is done. |

Now we give a sufficient condition to check if the induced Ly-norm of an LPV

system is less than a prescribed value v using PDLF.

Theorem 3.3.1 Given a compact set P C R?, finite non-negative numbers {v;}7_,, and the
LPV system in (3.2.6). If there exists a function W € CH(R*,8™*"™) such that, W(p) > 0

and

AT (p, BYW (p) + W (p) +Z (B9Z) W(p)B(p,B) v~'CT(p, )
BT (p, )W (p) L, 'DT(p,p) | < OB
v~1C(p, B) v~'D(p, ) —1I,,

forallp € P and |B;| <viyi=1,---,s, then
1. the function A is parametrically-dependent stable over P,

2. there exists a scalar § with 0 < & < v such that HG]:;3 » <4,
Ty

Proof: Using the results in [Tad], [RavNK] and [LimAKG], one can show that for trajecto-
ries p € Fp, the LTV system (3.2.6) is exponentially stable, and the induced Ly-norm from
d to e is strictly less than . For completeness, we provide an alternative proof here.

For any trajectory p € Fp, we have p(t) € P and |p;(t)| < v, + = 1,2,---,5 for
all t. Then equation (3.3.15) implies

AT (p, )W (p) + W (p) pp+2( WY W(p)Blp,p) 7CT(p, )

BT (p, PYW (p) —J 7_1DT(,0,,6) <0 (3.3.16)

71C(p, p) v~ D(p, p) ~1I

By Schur complement arguments, we get that [I —y72DT(p, p) D(p, p)} is uniformly nega-

tive definite and

AL
dt-l-'y cC

+ (WB+472¢"D) (1-+72D"D) ! (Wb + 7‘2CTD)T <0 (3.3.17)

ATW + WA+
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holds for all ¢ > 0. Equation (3.3.17) leads to

AT (p(0). PN (p(1)) + W (1) Ap(0). o) + - < 0

for all trajectory p € Fp. So we conclude that function A is parametrically-dependent

stable over P.

Consider the PDLF V: R" x R°*—=R as

Vi(z,p) =2 W(p)a.

Along trajectories of (3.2.6), the time derivative of function V(z(t), p(¢)) is given by

% = (27AT +d"BT) Wz + 2T W (Az + Bd) + xT%x

= xTCFWHJVA+%g)x+WBTW¢+xﬁWBd

< =T [(WB+572C"D) (1=972D" D) (WB +572CTD)" 4+4972C7C 2
+d"B*"Wa + «"WBd
1 1 9
< - H(I—'y—2DTD)5d— (I—»)/—ZDTD)_E (WB-l-'y_zCTD)TxH _7—26T6+de

< =y lell® 1l

Integrating both sides from 0 to oo, starting from 2(0) = 0. By Lemma 3.3.2, tli)m z(t) =0,

therefore
lells <+ 1dll; -

This indicates that the induced Lg-norm from d — e is less than or equal to v. To get
the induced Ly-norm of LPV system (3.2.6) strictly less than v, again by compactness, the
inequalities in (3.3.15) can be slightly modified, and still hold. Specifically, there exists a
d < v such that with B replaced by (5/7)_%B, C replaced by (5/7)_%0 and D replaced by
(8/v)71D, the inequality (3.3.16) still holds (uniformly). Hence, repeating the arguments
above gives that the system described by (A, (5/7)_21B, (5/7)_210, (5/7)_1D) has induced

Lo-norm less than v, reaching the desired conclusion. |

Remark 3.3.1 In Theorem 3.3.1, the parameter variation rates are assumed in symmetric
region about zero, but it is possible to relax such assumption to non-symmetric case. The
analysis and synthesis results given in Theorem 3.3.1 and Theorem 4.3.1 (or Theorem 4.3.2)

still hold with minor modification.
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Theorem 3.3.1 is the generalization of well known Scaled Bounded Real Lemma.
and formulates a sufficient condition to test the induced Lg-norm, from disturbance to error
signals, of an LPV system is less than some given performance level v > 0. By restricting
constant matrix W, it recovers the result in [Bec, Lemma 3.4.5] which is a analysis test for
LPV systems with arbitrarily fast varying parameter. Our analysis test (Theorem 3.3.1) is
potentially more powerful and less conservative than previous results because of its exploita-
tion of parameter variation rates information. Moreover, the condition (3.3.15) is written as
a group of LMIs of a continuously differentiable function W (p), so it is a infinite dimensional
convex problem. By approximating the function space with finite basis functions, we can
simplify the condition to finite dimensional convex problem and solve the analysis problem
using efficient convex optimization techniques.

If the state-space data do not depend on derivative of parameter explicitly, we have
the following simplified analysis test. This test includes 2° LMIs of some positive definite
function, and only needs to grid parameter space thus computationally less expensive than

Theorem 3.3.1.

Corollary 3.3.1 Given the LPV system in (3.2.6) without state-space data dependence on
parameter derivative. If there exists a function W € C1(R®*,S8"*") such that, W (p) > 0 and

AT(p)W (p) + W (p) A(p) + Z + (V%) W(p)B(p) v 'CT(p)

BT (0)W (p) L, ' DT(p) | <O B8
7~IC(p) D) I,
for all p € P, then
1. the function A is parametrically-dependent stable over P,
2. there exists a scalar § with 0 < & < v such that HG]:;3 i <4.
Proof: It follows similarly to the one for Theorem 3.3.1. |

Remark 3.3.2 The notation » |+ (-) in (3.5.18) indicates that every combination of +(-)

=1
and —(-) should be included in the inequality. This means that the 3 X3 “inequality” actually

represents 2° different inequalities which must be checked simultaneously.

As is customary [Sch2], [Bec], [BecP], [Pac], [ApkG], [ApkGB], we will use analysis

result Theorem 3.3.1 to derive the existence condition for control synthesis.
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Chapter 4

Control of LPV Systems with

Induced Ly-Norm Performance

In this chapter, we study a parameter-dependent output-feedback control problem for LPV
systems with bounded parameter variation rates. This problem determines the existence
of a parameter-dependent controller to parametrically-dependent stabilize the closed-loop
LPV system and guarantee the induced Lg-norm of the closed-loop system less than ~.
The derivative of parameter is assumed to be measurable in real-time to construct such a
controller.

In §4.1, we define the Parameter-Dependent y-Performance Problem for LPV sys-
tems, which is generalized LPV version of the standard H., problem [Fra]. In §4.2, we
solve for the parameter-dependent state-feedback control problem. This problem has its
own interest other than being used to derive the solution for the Parameter-Dependent
~v-Performance Problem. In §4.3, we derive the necessary and sufficient condition for the
Parameter-Dependent v-Performance Problem. Finally, we study computational issues re-

lated to the Parameter-Dependent «-Performance Problem in §4.4.

4.1 Parameter-Dependent y-Performance Problem

In this section we define the Parameter-Dependent «-Performance Problem for LPV sys-
tems. The definition is the application of analysis result in Theorem 3.3.1 to the closed-loop
systems.

The open-loop LPV systems are in the standard form and given as follows.
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Definition 4.1.1 Open-Loop LPV systems for Induced Ly-Norm Control
Given a compact set P C R?®, consider the open-loop LPV system Xp

(1) Alp(1))  Bi(p(t))  Ba(p(t)) z(t)
et) | = | Cile(®)  Dulp)  Dualp(t)) | | d(t) (4.1.1)
y(t) Ca(p(t)) Dailp(t)) Daalp(t)) | | u(t)

where p € Fp, x(t) € R", d(t) € R, e(t) € R", u(t) € R™ and y(t) € R™. All of the

state-space matrices are of appropriate dimensions.

For simplification, we made the following assumptions for the generalized plant:
(B1) Da2(p) = Onyxrnas
(B2) Di2(p) is full column rank for all p € P,
(B3) Dgi(p) is full row rank for all p € P,

Assumption (B1) can be relaxed easily by including a feed through term to the
controller for the modified plant which has D,y term equal to zero. The relaxation of As-
sumptions (B2) and (B3) leads to singular ., problem [Schl], [Sch2]. With the Assump-
tions (B1) — (B3), we can simplify the open-loop LPV systems using techniques described
in [Bec], which lead to:

Definition 4.1.2 Simplified Open-Loop LPV Systems for Induced L;-norm Con-

trol
Gliven the open-loop LPV system Yp in Definition 4.1.1 and the Assumptions (B1) — (B3)

hold, then the system can be rewritten as

Lo || A0w) BuG®)  Bukw) Biew) || e ]
e1(?) _ Culp(t)) Din(p(t)) Diinz(p(t)) 0 dy(t) (4.12)
e2(t) Ci2(p(t)) Duz(p(t)) Diia2(p(t))  ln, da(t)

Ly || Cale(t) 0 Ing, 0 || u® |

where p € Fp, di(t) € R, dy(t) € R"2, ¢,(t) € R™! and ey(t) € R"2.

The class of finite dimensional parameter-dependent controllers, which depend on

parameters and their derivatives, is given by
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Definition 4.1.3 Parameter-Dependent Controllers

Given a compact set P C R® and an integer m > 0, denote the parametrically-dependent, m-
dimensional linear feedback controller as Kp, with the continuous functions (Ax, Bx,Cx, D) :
R* x R? — (R™*™ R™*"y R"*™ R X" The controller Kp depends on parameter and
its derivative, and is written as

ak(t) | | Ar(p®,5(0) Br(p(t)p(0) | | 20 (4.1.3)

u(t) Cr(p(t), p(t))  Dr(p(t),p(1)) | | y(t)
where p € Fp, x(t) is the m-dimensional controller states.

Define a5 (1) := [T (1) «l ()], eT(t) := T (1) el(t)| and d”(t) := |a] (1) dT(1)].
Then the closed-loop LPV system is given by

tap(t) || Aap(p(t), o)) Bap(p(t), p(t)) | | wep(t)
e(t) Cep(p(t),p(1))  Dap(p(t), p(t)) d(t)
where
Aalp ) = A(p) + Ba(p) Dr (p, p)C2(p)  B2(p)Cx (p, p) | (4.1.4.)
L BK(,O, :0)02 (:0) AK(Ioa :0)
Basip. ) = Bui(p) Bua(p) + Bz(p) D (p, o) | (4.1.40)
L 0 B[((p,,b)
_ Chy 0
Caplp,p) = (v) , (4.1.4.¢)
| C2(p) + Drc(p, p)C2(p)  Cr(p, p)
D) = | Pt Durale) . (4.1.4.d)
| Dui2i(p)  Diiz2(p) + Dk (p, p)

Next we will define the Parameter-Dependent +v-Performance Problem. Given a
parameter-dependent plant, the Parameter-Dependent y-Performance Problem is to deter-
mine if there exists a parameter-dependent controller and a PDLF such that the analysis

test described in Theorem 3.3.1 holds for the closed-loop system.

Definition 4.1.4 Parameter-Dependent v-Performance Problem

Given the open-loop LPV system Yp in Definition 4.1.2, and the performance level v >
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0. The Parameter-Dependent v-Performance Problem is solvable if there exist an inte-
ger m > 0, a function W € CI(RS,S(”"'T”)X(”"'T”)), and continuous matriz functions
(A, Br,Ck,Dg) : R® x R® — (R™*™ R™*" R™*™ R™ ") such that W(p) > 0

and

8

AL (P BYW () + W (p) Aerp (0, 8) + 3 (B5) W(p)Bap(p.8) v~ CE, (6, 9)

i=1
ng(P,ﬂ)W(P) _Ind 7_1D£p(paﬂ)
7_1Cclp(paﬂ) 7_1Dc1p(P,5) _Ine

<0

(4.1.5)

forall p e P and |3;| < vy v =1,---,s. Here the matrices Acp, Belp, Cealp and Dy are
defined in equation (4.1.4.).

This problem is a generalization of the standard sub-optimal H., optimal control
problem, and conceptually expands the applicability and usefulness of the H., control
methodology. Additionally, the solution can be put inside a larger design iteration, such
as a D — K iteration, to achieve robustness to other perturbations, such as unmodeled
dynamics.

Before solving the Parameter-Dependent y-Performance Problem, we will study

the state-feedback control problem for LPV systems in the next section.

4.2 Parameter-Dependent State-Feedback Problem

In this section we study the Parameter-Dependent State-Feedback Problem. The problem
is about the existence of parameter-dependent state-feedback control to stabilize the closed-
loop system and make the induced Lo-norm less than a specified performance level v. First,

we define the problem we want to solve.

Definition 4.2.1 Parameter-Dependent State-Feedback Problem
Given a compact set P C R®, the performance level v > 0, and the LPV system Xp

| x(t)
#t) | _ | Al@) Bi(p(®)  Ba(p(t)) a0 (4.2.1)

e(t) Cilp(1)) 0 Dizp())
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where p € Fp. The Parameter-Dependent State-Feedback Problem is solvable if there exist
functions Z € CYR*,8™*™) and F € C°(R® x R*, R™*"™), such that for all p € P and
1Bl <wiyi=1,2,--+,s, Z(p) > 0 and

A?(p,ﬁ)Z(p)JrZ(p)AF(p,ﬁ)+ZS:(ﬁig—i) Z(p)Bi(p) 7~'CE(p, B)
B () Z(p) ~Iu, 0o | <% 02
Y ICr(p, B) 0 ~1In.

where Ap(p. p) = A(p) + Ba(p) Fp, 3}, Cr(ps ) := Ci(p) + Diz(p) Flps )

With Assumption (B2), the open-loop LPV system for the state-feedback problem

can be written as

() Alp(t))  Bilp(t)) Ba(p(t)) | | =(t)
er(t) | = | Cia(p(t)) 0 0 d(t) (4.2.3)
e2(t) Cra(p(t)) 0 I,y u(t)

If the Parameter-Dependent State-Feedback Problem is solvable, then the state-
feedback control law u = F'(p, p)x would render the closed-loop system exponentially stable
and induced Lg-norm less than 7. The following theorem states the existence condition of
a state-feedback controller for Parameter-Dependent State-Feedback Problem in the form

of LMIs expressed by the state-space data of the open-loop LPV systems.

Theorem 4.2.1 Given a compact set P C R®, the performance level v > 0, and the LPV
system in (4.2.3). The Parameter-Dependent State-Feedback Problem is solvable if and only
if there exists a function X € CH(R®, 8™*") such that for all p € P, X (p) > 0 and

XA () + A)X () = 3% (e ) = Ba()BE ) X(ICE () 2~ Balo)
Ci(p) X (p) —1e, 0 <!
¥~ BY (p) 0 —la
(4.2.4)

where A(p) := A(p) = Ba(p)C1a(p).
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AT(0)Z() + Z(0)AG) + Y (B32) Z(0Bi(e) 7' CLp) v Ch(p)
R(p,p) = BY (p)Z(p) —1I4 0 0 ,
v~ 1Cuilp) 0 —In,, 0
i v~ Cia(p) 0 0 —In, |
| Z() B (p)
0 T
Ulp) = . o Vip) =1L 00 0].
7_1Inu

Then equation (4.2.2) can be rewritten with these new notations as

G(p,B) == R(p, B) + U(p)F(p, BV (p) + V() F (p, B)U (p) < 0.

Let X (p) :=v72Z71(p). The orthonormal bases of U(p) and V (p) are given by

¥X(p) 0 0 0 0 0
0 I, 0 I, 0 0
ULlp) = ;o Vilp) =
0 0 I, 0 I, 0
| -Bi(p 0 0 | 0 0 I, |

Since G(p, ) is uniformly negative definite over the compact set P and |G| < v;,1 =
1,2,---,s,and Uy (p), Vi(p) are of full column rank for all p € P, it is clear that if G'(p, 8) <
0 for all p € P, then

UL(p)G(p,B)UL(p) <0 and V[ (p)G(p, )VL(p) <0,
which implies that
UL(p)R(p,B)UL(p) <0 and V[ (p)R(p, )VL(p) <0

for all p € P and |3;] < viyi = 1,2,---,5. But VI (p)R(p, 3)VL(p) < 0 yields no useful
ingotmation, and the inequality U (p)R(p, B)UL(p) < 0 is identical to equation (4.2.4) by
simple algebra.

< For sufficiency, we need to show that equation (4.2.4) establishes a matrix function

F(p,3) such that equation (4.2.2) with such a F holds for all p € P and |5;] < v;,i =
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1,2,---,s. By Schur complement, equation (4.2.4) can be written as
. . u 0X _
X (AT (p) + A(p)X (p) = >+ (Vz'a—p,) = Ba(p)B] (p) +77*Bi(p) B{ (p)
i=1 v
+X(p)CHi(P)Cri(p) X (p) < 0 (4.2.5)

for all p € P. Define Z(p) := v~ 2X ~1(p), then
07 0X
= —yT2X"1
dp; ! dp;
for i = 1,---,s. Pre and post-multiply the left hand side of equation (4.2.5) by Z(p), and

x-!

factor out a y~2 results in

A 200+ 2000 #1725 ) =522 Bt BE ) 21

£ 20 B () BL(0) Z(p) + 72 Ch (0)Cualp) < 0, W pe P

which is equivalent to
[A= By (Cro+v2BI2)]" 2+ Z[A = By (Cra+72BY 2)] + Z + (m 5, )

Ci1

T G (R IRI L CaeBln)
12 — 12 T 535

] +zB,BYZ < 0. (4.2.6)

for all p € P. Equation (4.2.6) results in a natural choice of state-feedback gain F’

Flp) == V2B (0)Z(p) + Cralp)] = = | B (0) X (p) + Cra(p)], (4.2.7)
such that
AE(P)Z(p) + Z(p) Ar(p) + Z £ (52 ) +9 2 CHOICH )+ Z0)Ba(p) BT () 2(0) < 0

for all p € P. So for any p € P and |3;| <wv;, i =1,---,s, we have
AE(0)Z(0) + Z(p) Ar(p) + Z (ﬂz =)+ 2 CHEICHP) + Z(0) By 0) BT () 2(9) < 0.

Note that the above inequality is exactly the Schur complement of equation (4.2.2). |

Theorem 4.2.1 converts the solvability condition of Parameter-Dependent State-
Feedback Problem to existence of one matrix function X (p) satisfying condition (4.2.4)
(which involves 2° inequalities). The variable X is shown in affine form in all of the in-

equalities. This LMI formulation have advantage over equation (4.2.2) from computational
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point of view. Furthermore, the theorem says that even if we search the state-feedback
controllers which may depend on parameter and its derivative for Parameter-Dependent
State-Feedback Problem, it is enough to render the closed-loop system’s induced Lg-norm
performance less than v by state-feedback controller in the form of equation (4.2.7), which
depend on parameter only. This theorem will be used later to derive the existence conditions

for the Parameter-Dependent +-Performance Problem.

4.3 Parameter-Dependent Output-Feedback Controller Syn-

thesis

In this section, we derive the solvability conditions for the Parameter-Dependent v-Performance
Problem. The synthesis result exploits the parameter variation information by using PDLF,
thus is less conservative than single quadratic Lyapunov function approach [BecP], [Bec],
[ApkG].

First, we will study the case of Dy;(p) = 0, in which the formula is much simpler.

Then we generalize the result to Dyi(p) # 0 case.
4.3.1 Dyi(p) =0 case

We state a matrix fact which will be used later in the proof of our synthesis result.

Lemma 4.3.1 Given a compact set P C R®, and two functions X € C1(R*,8"*"), Y €
CHR®, 8™y with X (p) > 0, Y(p) > 0 for all p € P, a positive integer m. There exist
matriz functions X9 € CH(R*, R™™™), X3 € C1(R*, 8™%™) such that

X(p) Xalp)
> 0,
| X7 (p) Xs(p) |
and

) -1

X X Y *

(p) 2(p) — () , (“” means “don’t care”)

| X7 (p) Xs(p) | *x ok

for all p € P if and only if

X
>0, and rank < (n+m).
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Furthermore, we have

G = YOG 0+ Y ()G () 4 Valp) Y () + Yal) o Y (0

fori=1,2,---,s.

Proof: The proof for the first part of the lemma uses the matrix inversion lemma and

Schur complements (see [Pac]). For the second part, define

X(p) X,
W(p) = 7yl , and  Z(p) = W™l (p).

X7 (p) Xs(p)

Differenting W ~! with respect to p; gives
0z ow

=—-Z—17.
dpi dp;
The (1, 1) block of above equation is
oYy 0X 0Xy 1 oxt 0Xs .7
=—-|Y Y Y Y. Y. Y Y. Y.
which holds for i = 1,2,---,s. |

Theorem 4.3.1 Given a compact set P C R?, the performance level v > 0 and the LPV
system in (4.1.2) with restriction Dy1(p) = 0, the Parameter-Dependent ~-Performance
Problem is solvable if and only if there exist matriz functions X € C1(R*,8"*") and Y €
CHR?,8™™), such that for all p € P, X (p) >0, Y (p) > 0, and

X(p)AT(p)Jr/l(p)X(p)—Zi<wg—f§) — Ba(p)BY (p) X (p)CT(p) v Bilp)
Ci1(p) X (p) ~In,, 0 <0
7_1Bf(p) 0 _Ind
(4.3.1.2)
AT(p)Y(p)JrY(p)A(p)JrZi(Vig—;) — CT(p)Ca(p) Y(p)Bii(p) 7~ 1CT(p)
BT, (0)Y () o 0 <0
7_101(P) 0 —1In,
(4.3.1.b)
X(p) 7_1In ] > 0
7_1In Y(P) ] - ’

(4.3.1.c)
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where A(p) := A(p) = Ba(p)Chr2(p), Alp) := A(p) — Bia(p)Ca(p).
If the conditions are satisfied, then by continuity and compactness, it is possible
to perturb X (p) such that the two LMIs (4.3.1.a)-(4.3.1.b) still hold and Q(p) := Y (p) —
72X "Y(p) > 0 uniformly on P. Define

F(p) = —|BL(p)X " (p) + DL,C1(p).
Lip) = - [Y U p)CT(p) + Bi(p) D3]
H(p,p) = - [X_I(P)AF(P) + AL ()X (p) + Z (ma(‘;:l) +CE(p)Cr(p)

77X () BB ()X ()
with Ap(p) := A(p) + Ba(p)F(p) and Cr(p) := C1(p) + D12F(p). Furthermore, let
M(p, p) = H(p, p) +7*Q(p) [-Q7" ()Y (P) L(p) D21 — Bi(p)| B (9) X (p).

One n-dimensional, strictly proper controller Kp with the state-space data in (4.1.3) that

solves the feedback problem is given by

Ax(p,p) = Alp)+ Ba(p)F(p)+ Q (p)Y (p) L(p)Calp) — v~ 2Q  (p) M (p, p)

Bk(p) = —Q ' (p)Y(p)L(p) (13.2)
Ck(p) = Flp)

Dk (p) = 0.

Proof: = Let W € C'(R*,S(*+™)x("+m)) he the PDLF that satisfies the analysis test in
Theorem 3.3.1 for the closed-loop system. Hence, W is bounded and uniformly positive
definite over P. Define Z(p) := v *W~1(p). Clearly, Z is also continuously differentiable,
bounded and uniformly positive definite over P.

Partition W and Z as

Yi(p) Ya(p) X(p)  Xa(p)
Wi(p) = , and Z(p) = 1
Yi(p) Ys(p) X7 (p) Xs(p)
where X € CL(R*,8""),Y € C'(R*,8™"), X, € C'(R*,R™™),Y, € C'(R*,R"™"™),
X3 € CHR?#,8™*™) and Y3 € C1(R*,8™*™). By Lemma 4.3.1, we get
X(p) v~

v Y(p)

>0
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for all p € P.
To show necessity of inequalities (4.3.1.a) and (4.3.1.b), write the left hand side of
equation (4.1.5) as

G(p, ) = R(p, )+ U(p) K (p. B)V' (p) + V(p) K (p, B)U " (p),

where
[ AT o W | A0 ]
0 On 0 0 W[Bn Blz] et Tt
‘ 0 0 0 0
ow
+._1 (ﬂiap,)
ro= [BlTl o] I, 0 0 0 !
W
BT, 0 0 =l 00
v 1Cn 0 0 0 ~In, 0
L il 1012 0 0 0 0 _IneZ i
'W 0 By | | [0 cf
Iy 0 I, 0
00 0 0 Ag B
U = R R R
00 0 In, Ck Dk
00 0 0
0y ', | L0 0 |
Define
vX(p) 0 0 0 I, 0 0 0
yXF(p) 0 0 0 0 0 0 0
0 I, 0 0 0 I, 0 0
UJ_ — dl ’ VJ_ — dl
0 0 I, O ~Cy(p) 0O 0 0
0 0 0 I, 0 0 I, 0
-BIp) 0 0 0 0 0o 0 I,

Note that for all p € P, UTU =0, VIV =0,and [U U,],[V V.]are full rank. Since both
U, and V| are full column rank for all p € P, it is clear that if G'(p, ) < 0 for all p € P
and |B] < v, t=1,---,s, then

UL (p)G(p, HUL(p) <0 and VI (p)G(p,B)Vi(p) <0,



which implies that

Ul (p)R(p,$)UL(p) <0 and VI (p)R(p, B)VL(p) <0
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for all p € P and |f| < v, © = 1,---,s. Carrying out the algebraic manipulations,

UL (p)R(p, B)UL(p) < 0 is equivalent to

Qp,3) 7 'Bilp) X(p)Chip)

B (p) ~1 0 <0 (4.3.3)
Cu(p) X (p) 0 —1
where
Q = 2 (XYAX + XATY X + X ATy, x] + X,V AX)
aY- Yyl aY-
2 2 2 3
: X “2xT| - B,BT
Zﬂ l o T+ X, O o ] 255 .
Using Lemma 4.3.1, we get
oy Yy avyy aYs 0X
XX+ X2XT 4 X2 X 4 Xy XT ) = 22
( o T g TR, T, Ipi

Furthermore ZW = 5721, it follows that Y X 4+ Y, XJ = XY + Xo¥,! = 4721, This

simplifies €2 to

Q9. 5) = A X () + X (0)AT(0) ~ 3 (8.5 ) ~ Balp) BE (o),

=1 v
Hence the condition in (4.3.3) is

B
~

A(p)X (p) + X (0)AT(p) = 3 (5:5%) = Balp) B (p) 77'Bilp) X (p)CTi(p)

B < 0.
v~'BT (p) ~1 0

Ci1(p) X (p) 0 ~1I

As R(p, ) is an affine function of 3, the above inequality is equivalent to

A(p)X (p)+ X (p Zi(wap) Ba(p)BL(p) v"'Bilp) X(p)CHi(p)

_ < 0,
v 'B{ (p) -1 0

Ci1(p) X (p) 0 ~1I
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for all p € P and |5 < v, ¢ = 1,2,---,s. Simpler manipulations show that inequality
Vi(p)R(p, B)VI(p) < 0 is equivalent to

y y s oy s
AT )Y ()4 Y (Ao + 3o (15 ) = CHICHe) Yo Bulp) 77 CT (o)
=1 v
Bui(p)Y (p) -1 o |<°
7' C(p) 0 -1
forall pe Pand |5 <v;y, 1 =1,2,--+,8
< For sufficiency, this direction uses the approach of [SamMN]. We verify the controller

given in (4.3.2) satisfies the Parameter-Dependent ~-Performance Problem using the fol-

lowing function W € C1(R?#, §27%2"),

Y(p) - (Y(p) = 772X (p))
—(Y(p)=172X"p)  Y(p) =772 X"(p)

First, note that by Schur compliment, W > 0 for all p € P. Define

W(p) =

ip,8) = AL (p, AW (p) + W (p) Aap(p, B -I-Z(ﬁz )
+ 77 2ChL (p)Cap(p) + W (p) Bep(p) BY, (9)W (p)

where the closed loop matrices A, Bep and Cqp, are defined in (4.1.4.). Partition I' into

n x n blocks I'yy, 12, '92. Using the constant similarity transformation T = ro on
I 1

I' leads to

L(p,8) = T'T(p, BT

= Al (p, )W (p) + W (p) Acip(p, B) + Z_: (ﬂz 8[)2)
+ 772 Cap(p) Catplp) + W (p) Bap(p) Béy (0) W (p) (4.3.4)

where

Aap(p,8) = T7 Aap(p, H)T,

Bap(p) = T7'Bap(p),

Cap(p) = Cap(p)T.
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and W (p) := TTW (p)T. Partition I' into n x n blocks I'yy, 19, T'99. It is straightforward
to verify that

~ - _2H ) - _2H )
Fo. 8) = v *H(p, ) v~*H(p,B)
—v72H(p,8) T1i(p,8)— v 2H(p, )
Note that
Dyi(p,8) = —y*H(p,0)
= 7 [Ava(p)X"l(p) + X ) Ar(p) + 3 (ﬂi%)

+CE(P)Crp) + 772X " (p) Bi(p) B (9)X ' (p)]

with Ar(p) = A(p) + Ba(p) F(p), CE(p) = [CTi(p) Chp) + FT(p)]. So T1i(p, #) is nega-
tive definite for all p € P and |3;| < vy, 1 =1,2,---,s by Theorem 4.2.1. Furthermore

f22(paﬂ) _f{2(paﬁ)f;ll(paﬂ)f12(paﬂ)
= Fll(paﬂ) - 7_2H(loaﬂ) - |:_7_2H(:07ﬂ)] |:_7_2H(:07ﬂ)]
= Tulp,p)
Y

= Y(p)AL(p)+ AL(p)Y (p) + Z_: (ﬂig_p) +772CT (p)Ci(p) + Y (p)BL(p) BL ()Y (p)

3

-1

[—v72H (p, 3)]

with Ar(p) = A(p)+ L(p)Ca(p), Br(p) = [Bi1(p) Biz2(p) + L(p)]. This quantity is negative
definite for all p € P and |3;| < vy, i = 1,2,---,s by the dual of Theorem 4.2.1. Combine
[y < 0and Ty — f{2f;11f12 < 0, we get L <0 by Schur complement arguments. From
equation (4.3.4), I'(p, 3) < 0 for all p € P and |5;] < vy, i =1,2,---, s as desired. |

4.3.2 Non-zero D;(p) case

In order to prove the general case of Dy1(p) # 0, we need the following lemma (adopted

from [DavKW] & [Doy]) to convert Dqq(p) term to required form.

Lemma 4.3.2 Given matrices A, B and C' with compatible dimensions, then

A B
min o =max c[A B],o =: 0.

¢ X C
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For any v > 7o, one of the solution for the inequality

A B
o <y
¢ X

is given by X = —C' (721 - ATA)_1 ATB.

Proof: see [DavKW] & [Doy]. |

For notational purposes, denote

Di11.(p) Di111(p)  Dir2(p)

Dy12.(p) I Di121(p)  Dii22(p)

Di111(p) | Di12(p)
| Du21(p) | Dii2z(p) |

Now we can give the complete solvability condition for the Parameter-Dependent v-Performance
Problem with Dy;(p) # 0.

[Di1a(p) Dira(p)] =

Theorem 4.3.2 Given a compact set P, the performance level v > 0 and the LPV system
in (4.1.2), the Parameter-Dependent ~-Performance Problem is solvable if and only if there
exist matriz functions X € CH(R*,8"*") and Y € CY(R*,8"*"), such that for all p € P,
X(p),Y(p) >0, and

X(p)AT(p)Jr/l(p)X(p)—Zi<wg—f§) — Bs(p)BY (p)  X(p)CTi(p) v~ 'Blp)
Ch1(p) X (p) —In,, ™' D111.(p) <0
v 1B (p) v~ Di11(p) Ing i
(4.3.5.a)
A () + YA + L% (w5 ) = CHOIC) Y Bl M)
B\ (p)Y (p) by DR | S
71 C(p) ¥~ D11a(p) Lne ]
(4.3.5.b)
X(p) 7_1In ] > 0
vy, Y(p) ] -

(4.3.5.¢)
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where
Alp) = Alp) — Ba2p)Cualp),  B(p) := Bi(p) — Ba(p) D1r2(p),
A(p) = Alp) = Bi2(p)Calp),  Clp) := Ci(p) = Dira(p)Calp).

If the conditions are satisfied, then by continuity and compactness, it is possible
to perturb X (p) such that the two LMIs (4.3.5.a)-(4.3.5.b) still hold and Q(p) := Y (p) —
72X "Y(p) > 0 uniformly on P. Define

Q(p
Alp

‘= —Di1aa(p) — Diiaalp) [721'% - DlTlll(p)Dnn(p)]_1 Di111(p) Di112(p),
= Al(p) + B2(p)Q2(p)C2(p),
= Bi(p) + B2(p)Qp) Do,

(p)

(p)

Bi(p)

Cilp) = Cilp) + D12Q(p)Ca(p),
(p)
(p)
(p)

Dii(p) = Dulp) + D1282(p) D2y,
Dulp) = [1n. =72 DupDh()] .
Dilp) = [lny =72 Dh(p)Duslp)]
and
F(p) = —(DszDh(P)Dlz)_l
«[(Bao) + 2 B DR DUID1) " X0 + DEDLIC0)].
L) = = Y70 (Colo) + 22D Dp DR(ICH)) + Balp) Dulp) DA
x (D1 Dy(p) DF, )
Hpi) = - _X-1<p>AF<p>+A%<p>x-1<p>+; (ﬁgfp) +CE(p)Cr(p)

+_(X-1<p>Bl (p) + CF(p) Dirp))
« (1= DLip) D)) (BT (0)X (o) + Do) Cr ()]
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One n-dimensional, proper controller Kp with the state-space data in (4.1.3) that solves the

feedback problem is given by

Ak (p,p) = Alp) + B2(p)F(p) + Q71 (p)Y () L(p)Calp) = v*Q ™ (p) M (p, ),

Br(p) = Q' (p)Y(p)L(p), (4.3.6)
Cklp) = Flp),

Di(p) = Q(p)

Proof: The idea behind the proof is to transform the state space data to the case Dy = 0,
then employ Theorem 4.3.1 to get conclusion.

Using the variable transformation v = u — Q(p)y, the system becomes

& Ap) + B2(p)2p)C2(p)  Bi(p) + Ba2(p)Q(p) D21 Ba(p) | | @
e | = Ci(p) + D12Q(p)Ca(p)  Dui(p) + D122p) D21 Drz d
Yy Ca(p) Dy 0 v

Alp)  Bi(p) Balp) | |

= Ci(p) Du(p)  Diz d |- (4.3.7)

i 02(,0) Da Doy v

From Lemma 4.3.2, we know that the LPV system in (4.1.2) has induced Lg-norm less
than v only if o [D;1(p)] < 7. So for Parameter-Dependent +-Performance Problem,
[I — 7D} (,o)l—)ll(p)} and [I - 7_21_)11(,0)1_)?1(,0)} are both invertible. Define the follow-

ing unity, parameter-dependent transformation [SafL.C]

e | [ 7" Dui(p) [1—+72D11(p) DTy (p)] * ] [ d | d ]
= _ _ 1 _ = T(P) .
d [1—~2D% (p) D11 (p)] 2 v~ 1D (p) v~ le v le

Re-arranging the inputs and outputs of system equation (4.3.7), and scale the outputs by
v~1, we get

v le v 'Dulp) v7'Cilp) v 'Diz | | d d

i | =] Bilp) Alp)  Balp) || = | =80 a

Yy Dsy Cy(p) 0 v v
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Applying T (p) to the top of B(p), Fe(T (p), B(p)) is given by

Fe(T(p): Bu(p)) Ti2(p)(I = B11(p) Ta2(p)) "' Baa(p)
B ()T~ Toa(p) B (9)) ™ T ) FulB(o), Toslp) |
where
Fo(T,Bi) = 0:=7"'Dy,
Tiz(I = Bi1Ta2) "' Bz = 77! [(I - 7_21_7111_7?1)_% Ch (I - 7_21_7111_7?1)_% D12]
= {7_101 7_11\712} ;
Boi(I — Ta2B11) ' T1 = B (I - V_ZD?IDH) __i
Dsy (I - 7_2[7?1[711) ’
s
b )
R | A+ 42BDLDWCy By + v 2B DY DyDiy
| Cy+ 772Dy DY, D, Cy 0
A B
L b

So the transformed system is given by

i Alp)  Bilp) Balp) || @
el =1 G (P) Dll(p) D12(P) d (4.3.8)
y 02(,0) D21(,0) D22(P) v
By unitary property of 7, we get
7 lell + 1dl* = v e ) + [ld])?, (4.3.9)

But now Dyy, Doy are not in the standard [0 1]7 and [0 I] form any more. So we need to

rescale the inputs and outputs of the system (4.3.8). Define

_1 _1
Oy = (Dqu;le_) 2D1‘F2J_Dh2

_ 3 .
(DszDthz) * DLD;
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-3

R12 = (D%;DthZ) )
_1 -3 3

1

Ry = (D21DtD2T1) .

where the matrices Do and Dy are such that D}FQLDlg = 0, D21J_D2Tl = 0, and
[Do11 D2, {Dgu_ D%ﬂ are full rank. Scale the inputs d and v by Q1 and Ris, and
the outputs ¢ and y by ()12 and Rsq, it is easy to show that

. 0 .
Q12D12R12 = y R21D21Q21 = [0 I].
1

Then we have the new state-space data as

i Alp)  Bi(p)Qulp) Balp)Rizlp) | | @
¢ = | QuipCilp) 0 D1y d
0] Ra1(p)Ca(p) Dy 0 o

Alp)  Bilp) Bap) ||«

= | Ci(p) Dulp) Dulp) | | d (4.3.10)
| Ca(p) Dailp) Dazlp) | | @
Note that ()12, )21 are unitary matrices, so
EfF =18l NI = 11d)*. (4.3.11)

Now equation (4.3.10) is in the standard form with Assumptions (B1) — (B3) satisfied.

From equations (4.3.9) and (4.3.11), ||e|| < 7||d|| if and only if ||é|| < ||d||. Using Theorem

4.3.1, we get the necessary and sufficient conditions of Parameter-Dependent y-Performance

Problem for modified LPV system in (4.3.10) as follows:

I o : 0X
X( _32012)T+ (A—Bzclz)X—Z:I: (I/Zap
i=1 v

Ci X —1In., 0

)_BZBZT XCT, 415,

v~ BT 0 I,
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e e : oy “ . o |
Y (A — 31202) + (A — Blzcz)T Y + Z:l: (I/Z%) — C;CQ Y B11 7_10?
i=1 v
By Iy 0 <0
‘7_101 0 -1, |
(4.3.12.b)
X 4, |
Y > 0
v, Y |
(4.3.12.¢)

After tedious manipulation, we can show that equations (4.3.12.) are equivalent to equa-
tions (4.3.5.).

Furthermore, the controller formula for the transformed system (4.3.10) is given

by
Tp _ _Ak By T
0 _ék Dy, (]
A BFrQuvics 2 QYL | | w
I F 0 j
where
F(p) = —[BI (X~ (p)+ DECi(p)]
Lip) = =Y M 0)CT(p) + Bilp)DE|,
. . : Sl aX Y\ o .
H(p,p) = - [X_I(P)AF(P) + AR ()X )+ (ma—p,) +CE(p)Cr(p)
=1 g

+ X7Hp) Bi(p) BT ()X ()],
with Ar(p) = A(p) + B2(p) F(p) and Cr(p) = Ci(p) + D12F (p), and
M(p,p) = H(p, ) +7*Q(p) (~Q7 ()Y (p) L(p) D1 — Ba(p)) B (0)X~'(p).
It is easy to check that
Riz(p)F(p) = —Riz(p) [BE (0)X™(p) + Cra(p)]
= - (DszDh(P)Dlz)_l

« |(B2(p) + 2B (p) DT, (0) Dalp) Daz) X~ (p) + DT, Da(p)Ci (p)
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= Fl(p),
Lp)Rar(p) = = [YHp)CT(p) + Bia(p)| Rar(p)

_ _ T _
= =0 (o) + 4 Da DU DRI + Bl Dil) D

* (Dlet(P)Dle) -

and

H(p,p) = - [X_I(P)AF(P) + AR ()X (p) + Z (pza—m) + CE(p)Cr(p)

= H(p,p),
M{p, p) = v*Q(p) [y B1(p) D1y(p) Dilp) (Ci(p) + D12 F(p))
+972Q7(p)Y (9)L(p) D1 DYy (p) Di(p) Ci ()
= Mi(p,p).

So the controller for the original LPV system (4.1.2) is given by

3 A4 BoF +Q-YYLC, —20-'M —Q-'YL | | 2
u F Q Y
as desired. |

Theorem 4.3.2 formulates the necessary and sufficient conditions for the solvabil-
ity of the Parameter-Dependent ~-Performance Problem, and gives one parametrically-
dependent stabilizing output-feedback controller. All of the inequalities in (4.3.5.) are in
the form of LMIs of continuously differentiable matrix functions X (p), Y (p), which lead to
infinite dimensional convex feasibility problem. These conditions are parallel to the results
in [DoyGKF], [GloD], [Gahl]. Specifically, equation (4.3.5.a) is for state-feedback, (4.3.5.b)

for output estimation and (4.3.5.c) as coupling condition.

4.4 Computational Considerations

In this section, we discuss computational issues of the solution to the Parameter-Dependent

~v-Performance Problem given by Theorem 4.3.2. First, we use an “ad-hoc” approach to
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convert the infinite convex feasibility conditions in (4.3.5.) to finite dimensional LMIs, which
retain the convex property of original conditions. Then we discuss sufficient gradding density

which guarantees global solving of the resulted LMIs over the whole parameter set.

4.4.1 Convex Computational Algorithm

Several approaches to solve the LMIs in Theorem 4.3.2 can be proposed. One way is
to parameterize infinite-dimensional function space using finite number of basis functions.
Such a parameterization leads to a sufficient condition for the Parameter-Dependent -

Performance Problem.

Theorem 4.4.1 Gliven finite number of scalar, continuously differentiable functions {fz}f\;l

and {g;}I_, with the parameterization

=2 filp)Xi, Yip) =3 gi(p)Vi (4.4.1)

The Parameter-Dependent v -Performance Problem is solvable if there exist matrices {Xi}f\;l,

X; € 8™ and {Y;}IL,, Yi € 8", such that for all p € P, X (p) >0, Y(p) > 0 and

Zfz (XA + A X)) A
Y fip)XiCli(p) 7' Blp)
_Z:I: (yjzafz ) 2p)BI(p) =
< 0
Cll(P)Z:fi(P)Xi ~In,, 7~ Dian(p)
i 7B (p) v 'D.(p) —1In, |
(4.4.2.a)
> ai(p) (AT (p)Yi + Yid(p))
=1 Zgz )YiBii(p)  v~'CT(p)
+zi(wzagz ) -ctea
< 0
B, Zgz( Ing, “1Df4(p)
I y~1C(p) 7' Di1a(p) L,

(4.4.2.b)
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(4.4.2.0)
where
Alp) = Alp) — Ba2(p)Cralp),  B(p) := Bi(p) — Ba(p) D1ra.(p),
A(p) = Alp) = Bi2(p)Calp),  Clp) := Ci(p) = Dira(p)Calp).

Using such X (p) and Y (p), one admissible controller is formulated by (4.5.6).

Proof: Because the parameterization given in (4.4.1) is a candidate for continuously dif-
ferentiable functions in Theorem 4.3.2, the claim is clearly true. |

By parameterizing functions X (p), Y (p) with some pre-selected functions {fi}f\;l,
{9}, we come up with conditions (4.4.2.), which consists of 257! 4+ 1 LMIs of matrix
variables X1,Yy, -+, Xy, Yn. But such parameterization restricts the functions we search
over, and it may lead to some conservatism because the solvability condition (4.3.5.) now
depends on the basis functions you pick.

Next we will show the convexity of conditions in (4.4.2.). Define following matrix

functions

> filp) (XA (p) + A(p) X:)
o N Zfz )XiChi(p) v B(p)
-2+ (V;Za—,ﬁXz’) — Bz(p) BY (p)
J=1 =1 N ’
Cui(p)D_filp) Xi 1., +=1D111.(p)
771 B (p) 7' Di.(p) —In, ]
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Zgz ) (AT (p)Y; + id(p))
N Zgz YiBii(p) v'CT(p)
+Zi(v128; ) (P)Ca(p)
7 P)Z%’(P)Yi — 1oy, YD (p)
y~1C(p) 7' D11a(p) —ln. |

Spoo(Xla"'7XN7Y17"'7YN7:0) =
r N
Y filp)Xi 47U
=1 N
Y D gilp)Y
i=1

The next lemma states the convexity of above functions for fixed parameter.

Lemma 4.4.1 For fized p € P, the scalar valued function \p,.; [RicK (X1, -+, XN, p)] is
convex function of {Xi}f\;l, Amaz [Ricy (Y1, -+, YN, p)] is convex function of {Yz}f\;l and
Amaz [Sp (X1, -+, X, Y1, -+, Y, p)] is convex function of {Xz-}f\;l, {Yz}f\;l jointly.
Proof: Define X! := {Xlz}fvl, X? .= {Xzz}fvl, Yyl .= {Yl,i}f\; and Y? := {Yg’i}f\;l,
then
o0 1 2 1 2 =
Ao {Sp ((1 —a) X +aX" (1-a)Y +aY ,p)}
= max 2’ [Sp‘x’ ((1 —a) X'+ aX? (1-a)Y! + ozYZ,ﬁ)} z

zeR"
llzll=1
< (1 -a) max 2T [Sp‘x’(Xl,Yl,ﬁ)} z + a max a1 {Sp”(X2,Y2,,5)} x
et et

= (1= )Aas [spW(Xl, Vi p)} + @A mas [spoo(x2, V2, p)}

which clearly shows the convexity of function A4, [Sp™ (X1, -+, XN, Y1, -+, YN, p)]. The
convex property of functions A, [RicS (X1, XN, p)] and Aoy [RicF (Y1, -+, YN, P)]
can be proved similarly without difficulty. |

Furthermore, the inequalities in condition (4.4.2.) must hold for all p € P, which
include infinite number of constraints to be checked. To solve this infinite constraints
convex problem, we generally need to grid the compact set P. For example, if we grid
a hyper-rectangle P C R? with L points in each dimension, then the convex problem

to determine appropriate {X;}, and {V;}\, includes approximately L* (251! + 1) LMIs.
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The feasibility of these finite number of inequalities can then be determined with techniques

n [NesN], [NemG], [BoyE], [NekF], [HaeO].

4.4.2 Complexity Analysis

N
For feasible functions X (p Z:fZ )X and Y (p Zngz, by compactness of P, we

=1
know there exists a small § > 0, such that for all p € P

RZ'C%O(Xl,---,XN,p) < _57
Ric?’o(yla o '7YN7:0) < _57
Spoo(Xla"'7XN7Y17"'7YN7:0) > d.

Now we consider the inverse problem of the above. For simplicity, we assume that set P is
a hyper-rectangle in R®. Gridding P by Ly X -+ X L, points which is uniformly spaced in

each dimension, and denote the set of gridding points as

V:{(lola"'HOS) VSIS {,01,17"'7,01,[/1}7"'7,056 {ps,la"'aps,Ls}}'

Given a large number 7" > 0 and a small number ¢ > 0, suppose for all p € V

1 Xl < T, (4.4.3.a)

1Yillp < T, (4.4.3.b)

RicE (X1, XN, p) < =6, (4.4.3.c)

RicE (Y, -+, Xn,p) < =3, (4.4.3.d)

Sp( Xy, XNy Y, Yy p) > 6 (4.4.3.¢)

We want to decide how dense these points should be to guarantee the solvability of the
LMIs for all p € P. Note that conditions (4.4.3.a)-(4.4.3.e) are slightly stringent compared

with the original ones in equation (4.4.2.).

Lemma 4.4.2 Given the hyper-rectangle P C R®, and the LPV system in (4.1.2). Assume
that all state-space data are continuously differentiable and f;, g; are twice continuously
differentiable. Let
, ) N 82 .
R = (—) min ¢ |27 ) max fi
s =1 veP dp;0py

;T
REa» T

a(f; AT
Ip;
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T N . T
+ max @ + 2T max 8(f2011) + 27_1 max 9B
pEP Ip; || = veP Ip; | p o€P || Opj | 1z
DT -
+ 27 max 0 L ] ,
el | 9p; .
N It s T
A
[QT ma;c (?g] : ) + VjTZ ma%( 3 8 ma 8(22 02)
=1 "€ Pi lr iZ1io1 PP |Opidpe| - pEP Pi
N T = T -1
+ 2T max —8(92B1 ) -|—27_1 max 8—0 2+~ max —Dll'l ] ,
= reP Ip; || €P | 0p;|| - o€ | Opi | &

afz 892

[T%max -|—TZP€P ]_1}

Jorj =12, 5. If |pjk, — pjk, 41| < h;”m forallk; =1,2,---,L; —1 withj =1,2,---,s,
and there exist matrices X;,Y; solving equations (4.4.3.a)-(4.4.3.¢), then for all p € P

Ric (X1, -, Xnop) <
RZ'C%O(YM---,YN,,O) < 07
Spoo(Xla"'7XN7Y17"'7YN7:0) > 0.

0,

Proof: Note that for any p € P, there exist some ky,---, ks such that p € [p1 k,, P15 41] X

X [Pskes Pskot1]. Let pi=[p1g, - pPsk.], the nonzeros entries of the symmetric matrix

DX (p,p) := Ric§(Xy, -+, Xn,p) — Ricg(Xy,- -+, XN, p) are

DXu(p,p) = Y |Xi (FAT(0) = FAT () + (FiAp) - FAM)) Xi]

D [i (5200~ 20| - [67 ) - T )]
DXai(p,p) = (fZCn(P) = [iC11(p)) X;
DXu(p.p) = (DXEV(p,p) !
DXa1(p,p) = 77 (Blp) - B(p)),
DXus(p,p) = (DXai(p,p))
DXs:(p,p) = (D111 (p) = D1, (P))
DXs3(p,p) = (DX32(P7 '

So,

DX (ps P) 2
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X; (8—’?<p> - ok (ﬁ))

|

IA
_|_
S
(]

zﬁ | (74T () - AT ()],

j=1 =1 8’0'7 8’0'7
+ |[B:BY(p) - B:BI (9 + 22 1 (f:Cialp) = FiCu (A))ll
+27 BT - BT HF 277 [Phio) = D0
. ) 8 fZ )
< Z|P] Pj,k|l )51] JZZ 8 §2Jt)
=1 t=1i=1 PiPt F
B BT . i BT
H Lot ats C”) € vt Gt
dp; F F
oD, :
+ 27—1 111 56‘7 ] ’
dp; &) F
for some &1, £, €37, 47 €57, €67 € [Pl ks PLE 1] X [Ps e Pseat]
s M N AT 2 T
; AL ByB
< Z h;’”” 27 Y max 8% +v TZ max 5 w
j i=1 P€P Pilp i=1i=1 PEF |Opjpr|  pEP Pillp
N T T
i B D
+ 27T max —8(f Cll) + 2 -1 max + 27_1 max —8 111
= reP ;i | w p; || - p€P || Op; ||
< 0.
Therefore, o [RicS (X1, -+, XN, p) — RicS (X, -+, Xn, p)] <4, which guarantees
Ricgfo(le"'aXNap) <0
for all p € P as desired. The other two terms can be derived similarly. |

People may complain about the need to grid the P set. We too feel that this is
a disadvantage of the method. However in many gain-scheduling applications, the number
of scheduling variables is small, usually 3 or less. Hence the dimensionality of the gridding,
while extremely cumbersome, is not overwhelming. Of course, for a problem with many
parameters, the gridding procedure will become prohibitively expensive. This clearly indi-
cates the drawbacks associated with using Theorem 3.3.1 as a general robustness analysis
tool for systems with time-varying real uncertainty.

Another significant problem is the complete lack of guidance provided by the theory
to pick the basis functions, namely, f; and ¢;. An intuitive rule for basis function selection
is to use those present in the open-loop state-space data. Hopefully future study will yield

some results along these lines.
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Chapter 5

Parameter-Dependent
Stabilization of LPV Systems

In this chapter, the problem of stabilizing LPV systems using parameter-dependent Lya-
punov functions is studied and the parameterization of all parametrically-dependent stabi-
lizing controllers is given explicitly. We consider the case where parameter’s derivative is
also measurable in real-time. The results can be extended to the case that both plant and
controller depend on parameter only. It will be interesting to formulate a general framework
for such problem but we are not pursuing here. This chapter is a straightforward gener-
alization of the problem studied in [PacB], [Bec], and we recover their results by allowing
arbitrarily fast varying parameters and restricting constant Lyapunov functions. All results
are easily derived with slight modification of the corresponding ones in [Bec], thus proofs
are omitted here.

Specifically, in §5.1 we state parametrically-dependent stabilization problem for
LPV systems. §5.2 is devoted to the discussion of parameter-dependent stabilizability,
parameter-dependent detectability, and their properties. In §5.3, we solve the parametrically-
dependent stabilization problem by parameterizing the set of all parametrically-dependent

stabilizing controllers.

5.1 Parameter-Dependent Stabilization Problem

In this section we define a parametrically-dependent output-feedback stabilization problem

for LPV systems. This problem is a generalization of quadratic LPV stabilization problem
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[PacB], [Bec] but using PDLF. The open-loop LPV system is in the form of

Definition 5.1.1 Open-Loop LPV System for Parameter-Dependent Stabiliza-
tion

Given a compact set P C R?, the n-th order open-loop LPV system is given by

@0 | _ | Ab®) Bae®) w(t)’ (5.1.1)

y(t) Calp(t)  Onyxn, u(t)
where p € Fp, xz(t) € R™, u(t) € R™, and y(t) € R™, and the state-space data is of

appropriate dimension.

Note that the “D”term (direct feed-through from u to y) is assumed to be zero
in equation (5.1.1). It can be relaxed and the controller’s formulae is easily fixed at the
expense of complexity (see [Bec]). The subscript 2 of matrix functions By and C'y is used to
distinguish « and y from exogenous disturbance inputs and error outputs which are included
later on for performance problem.

The class of parameter-dependent controller we consider is assumed to depend on

parameter and its derivative, and it is defined clearly in the following:

Definition 5.1.2 Parameter-Dependent Controller
Given a compact set P € R?, an integer m > 0, and the continuous functions (Ax, Bk, Ck, Dg) :
R* x R? — (R™*™ R™*™ R™*™ R™*"). Then the parameter-dependent linear feed-

back controller can be written as
it | [ Akl o) Bilo.p) | [ 2o
u(t) Cr(p(t),p(t))  Dr(p(t), p(1)) y(t)

where p € Fp, xy is the m-dimensional controller states. This controller is denoted by Kp'

: (5.1.2)

(or simply Kp when the dimension is clear).

Defining xap = {xT xﬂ, and applying the controller Kp (5.1.2) to the LPV
system (5.1.1), the resulting closed-loop LPV system is given by

x.clp (t) = Aclp (p(t)7 lb(t))xdp (t)

where

Al ) = A(p) + B2(p) Dk (ps p)C2(p)  B2(p)Crc(ps p) . (5.1.3)

BK(,O, :0)02(:0) AK(Ioa :0)
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For notational purposes, define following functions,

A(p) 0 0 B,
s = | | 0P
L 0 O In 0
_ 0 I, Ax(p,p) Br(p,p
Crlp) = Kipp) = | 1 (p:p) Brc(p, )
L 02(,0) 0 CK(,O,,b) DK(,O,,b)

Then it is easy to check that Aqyp, in (5.1.3) can be rewritten as Aap(p,p) = A5, (p) +
By (p) K (p, p)CF(p).
The parameter-dependent stabilization problem asks for parameter-dependent sta-

bility for closed-loop systems and is stated as follows:

Definition 5.1.3 Parameter-Dependent Stabilization Problem
Given an open-loop LPV system in Definition 1.2.2. The Parameter-Dependent Stabiliza-
tion Problem is solvable if there exist an integerm > 0, a function Z € C'(R?, Strtm)x(ntm)),

and a function K € CO(R?® x R®, RUatm)x(+m)) sych that Z(p) > 0 and

5s(9) + B 0K (0 I ) 200) + 200) s (9) + B (0K (. o) + 1 (857 ) <0
forallp e P and |5 <vy t=1,---,s.

Later in §5.3, we will show that the solvability of the parameter-dependent sta-
bilization is based on an associated parameter-dependent state-feedback stabilization and

observation problems are solvable.

5.2 Parameter-Dependent Stabilizability and Detectability

In this section, we introduce the concepts of parameter-dependent stabilizability and parameter-

dependent detectability, and their properties. These concepts are generalizations of quadratic

stabilizability and quadratic detectability (see [Bec]) by using PDLF.

5.2.1 Parameter-Dependent Stabilizability

We state the notation of parameter-dependent stabilizability and its equivalent condition.
Also we show that adding dynamics to state-feedback controller does not help to stabilize

LPV systems.
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Definition 5.2.1 Parameter-Dependent Stabilizability
The pair of matriz functions (A, By) are parametrically-dependent stabilizable (PDS) over
P if there exist functions Pp € CH(R?,8™*") and F € C°(R® x R*, R"™*"™) such that,
Pr(p) > 0 and

T i JPr

Pr(p) [Alp) + Ba2(p)F(p, B)1+ [Alp) + B2(p) Fp, )] Pr(p) + Bigp) <0
i=1 v

for all p € P and |8 < vy @ = 1,--+,s. Such a function F will be referred to as a
parametrically-dependent stabilizing state-feedback gain for the pair (A, By) over P.

By applying the parameter-dependent state-feedback control u := F(p, p)x to the
open-loop LPV system

2(t) = A(p(t))2(t) + By (p(t))u(t),

the resulting closed-loop system is parametrically-dependent stable for any p € F5. The
stability can be shown by PDLF V (z, p) := 2T Pp(p)z (by Definition 3.2.3).

The following lemma gives an equivalent conditions to Definition 5.2.1. It has
computational advantages over Definition 5.2.1 because unknown variables in the condi-

tion (5.2.1) are shown in the affine form.

Lemma 5.2.1 The pair (A, By) is PDS over P if and only if there exist functions W €
CHR?,8™™) and R € C°(R* x R*, R™*") such that W (p) > 0 and

ow
ﬂza_

3

AW )+ WA () + Ba(p) Bip, )+ B (o 9B ) - 3

i=1

) <0 (5.2.1)
forpeP and |5 <wvi,i=1,---,s.

The next lemma shows that including dynamics in the state-feedback controller
does not assist in the parameter-dependent stabilization. This lemma is a special case of

more general results found in [RotK1] and [RotK2].

Lemma 5.2.2 Let m be any non-negative integer. Then the pair (A, By) is PDS over P if
and only if the pair (AS,, BE,)) is PDS over P.
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5.2.2 Parameter-Dependent Detectability

Similarly, we can define parameter-dependent detectability, which is the dual of parameter-

dependent stabilizability.

Definition 5.2.2 Parameter-Dependent Detectability

The pair of matriz functions (A, C3) is parametrically-dependent detectable (PDD) over P
if there exist functions Py, € CY(R*,8™*") and L € C°(R* x R*, R"*"™) such that Pp(p) > 0
and

Po(p) [A(p) + L(p, $)Ca(p)] + [A(p) + L(p, B)Ca(p)]T Prp) + z (ﬂz GPF)

Z

for all p € P and |5 < vyt = 1,...,8. Such a function L will be referred to as a
parametrically-dependent output injection gain for the pair (A,Cy) over P.

Similar to parameter-dependent stabilizability, using such a L in the parametrically-

dependent observer

(1) = A(p() (1) = L(p(t), (1)) [y(t) — Cp(t))2(1)]

vields a parametrically-dependent stable estimation of states & for the LPV system

for any p € Fp.

The equivalent condition of parameter-dependent detectability is the following;:

Lemma 5.2.3 The pair (A, C3) is PDD if and only if there exist functions P € C1(R®, §™"*™)
and H € C°(R* x R*, R"*"™) such that P(p) > 0 and

AT()Pp) + PUo)Alp) + Hip, 5)Catp) + () (0, 9) + Y (55

i=1

forallp e P and || <vi,i=1,...,8

As in the state-feedback stabilizability problem, dynamic extension does not make

the observation problem any easier also.

Lemma 5.2.4 Let m be any nonnegative integer. Then, the pair (A,C3) is PDD over P if
and only if the pair (Af,,Cy,)) is PDD over P.
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5.3 Parameter-Dependent Stabilization: Controller Synthe-

sis and Parametrization

In this section we formulate necessary and sufficient conditions for the solution to the
Parameter-Dependent Stabilization Problem. It turns out that the problem using output-
feedback control is solvable if and only if the associated state-feedback and output injection

problems are solvable. The theorem states:

Theorem 5.3.1 Given the LPV system in Definition 1.2.2, the Parameter-dependent Sta-

bilization Problem is solvable if and only if the following two conditions hold:

1. there exist functions Pp € CH(R*,8™*") and F € C°(R* x R*, R"™*") such that for
allpe P and |B| <vyy i=1,---,s, Pr(p) >0 and

[A(p) + B2(p)F(p, )] Pr(p) + Pr(p) [A(p) + Ba(p) F(p, B)] + Z (gz (?91:) <0,
(5.3.1)

2. there exist functions Pr, € CY(R®,8"*"), and L € C'(R* x R*, R"*™) such that for
all pe P and |By| <wi, i=1,--,5,

A(e) + Lo ICAT P+ PL) A + 1. 91Co) + 3 (3G ) <0

=1

(5.3.2)

If the functions F and L exist as in the above conditions, then

A(p) + Bz (p)F(p, p) + L(p, p)C2(p)  F(p,p)

K(p,p) :=

1s the state-space data of one parametrically-dependent stabilizing output-feedback controller.

Theorem 5.3.1 gives one particular parametrically-dependent stabilizing output-
feedback controller. Now we will parameterize all parametrically-dependent stabilizing con-
trollers for the LPV systems in (5.1.1). The following theorem has the same parameteriza-
tion as [Bec, Theorem 4.2.10], which is the familiar observer /state-feedback/stable-operator

structure that is well known for LTI and LTV systems.
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Theorem 5.3.2 Given the open-loop LPV system in Definition 1.2.2, such that the pair
(A, Bg) is PDS over P using some state-feedback F(p,p) and (A,C3) is PDD over P us-
ing some output injection L(p,p). Then the input/output behavior of all linear parame-
ter varying output-feedback controllers achieving parameter-dependent stability over P is

parametrized as

Thos (1) Agu(p(t), p(t))  Ax12(p(t), p(t))  Bri(p(t), p(t)) Tos (£)
o) | = | Axai(p(t),p(1))  Ag(p(t),p(1))  =Ba(p(t),p(1)) | | nq(t) |+ (5-3:3)
u(t) Cralp(t), o)) Colp(t),p(t))  —Dqlp(t), p(t)) y(t)
where
Agu(p, p) = Alp)+ Bap)F(p, p) + L(p, p)C2(p) + B2 (p) Do (p, p)C2(p)
Ag2(p,p) = Bap)Colp,p)s  Aralp, p) := Bq(p, p)C2(p)
Bii(p,p) = —L(p,p) + Bap)Dq(p,p),  Crilpsp) == F(p,p) + Dqlp, p)C2(p),

and the matrices Ag, Bg,Cq and Dg are arbitrary continuous functions (of appropriate

dimensions) on R* X R®, with Ag parametrically-dependent stable over P.

A realization of this familiar controller is shown in Figure 5.1.

The controller’s formula in equation (5.3.3) can also be interpreted with the usual
linear fractional transformation. Let F' and L be the parametrically-dependent stabilizing
gain for the pairs (A, By) and (A, Cy) as in Definitions 5.3.1 and 5.3.2. Define the 2-input,

2-output parametrically dependent operator J, as

A(p) + Ba(p)F(p, p) + L(p, p)C2(p) | —=L(p,p) Ba(p)
Jo(ps p) = F(p, p) 0 1. (5.3.4)

Ca(p) -1 0
Then, all FDLTV output-feedback, parametrically dependent controllers achieving parameter-
dependent stability over P are parametrized as the interconnection block diagram in Figure
5.2, where (), is any parametrically-dependent stable LPV system over P.
Suppose the state-space data of this LPV system 3, is written as

() Alp(t))  Bip(1))  Balp(t)) | | z()
e(t) | = | Cilp()) Dulp(t)) Dialp(t)) | | d(t) |- (5.3.5)
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Y
u
(to plant input) (from plant output)

L‘i;
o

F
Copti— [ Bqg
2]
Figure 5.1: Parametriza-

tion of all finite-dimensional linear time-varying parametrically dependent
controllers achieving parameter-dependent stability.

Define the 2-input, 2-output parametrically dependent operator T, as

A B2F B1 B2
—LCy A4+ ByF+LCy | —LDyy By
T, = . (5.3.6)
Ch Do F Dy Dyo
—C) Co Doy 0

Then, for all parametrically-dependent stable operators (),, with state-space realization

Aq(p. ) | Bolp.i)

Colp,p) | Dglpsp)

the block diagrams in Figure 5.3 are zero-state equivalent, and they represent all of the

Qulp,p) =

: (5.3.7)

possible closed-loop disturbance-to-error operators using parametrically-dependent stabi-
lizing controllers. For all parametrically-dependent stabilizing controllers, the zero-state,
closed-loop operator from d to e is an affine function of the free parameter () because the

(2,2) entry of T is zero.
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Qp

Figure 5.2: J, — (), parametrization of all FDLTV output-feedback, para-
metrically dependent controllers achieving parameter-dependent stability.

Figure 5.3: X, — J, — @, interconnection
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Chapter 6

LPV Systems Controller Design

In this chapter, we study several examples which illustrate the usefulness of the LPV system
theory to the gain-scheduling design.

Specifically, in §6.1 we design a controller with guaranteed LQG performance for
a two rotating disks problem. In §6.2, the design of LPV control with induced Lg-norm
performance for a pitch-axis missile problem is considered. In §6.3, we use the two-disk
problem introduced in §6.2 as a benchmark to compare the performance of different control

design methods.

6.1 LQG Control Example

In this section, we will design the LPV controller with guaranteed LQG performance for a
two-disk control problem. The problem is artificial and introduced in [Bec]. It is used here

to show the design of LPV controllers.

6.1.1 Two-Disk Model and Performance Measure

The problem is to control the radial position of a slider (M;) on a rod which could rotate
in the horizontal plane. The slider to be positioned is coupled with another slider (M)
mounted on a separate rotating rod. The control action applied to M; is transmitted to
M through a wire which can transmit force in both compression and tension. The sliders
are free to slide along the rods which rotate in the horizontal plane with angular velocity

Q) and €2, respectively.
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The dynamics of this two-disk system are represented by the following equations:

—br(t) = k[ra(t) + r2(0)] 4 f(2)
—brig(t) — k[ri(t)

+ ra(t)]

The various variables in above equations are

position of the first slider relative to the center (m)

position of the second slider relative to the center (m)

rotational rate of the first rod varying between 0 and 3 rad/sec

rotational rate of the second rod varying between 0 and 5 rad/sec

control force on the first slider along slot (V).

and the constant values are listed in Table 6.1.

My =1.0 kg mass of the first slider
My =0.5 kg mass of the second slider
b= 1.0 kg/sec | damping coefficient in slots

k =200.0 N/m spring constant

Table 6.1: Coeflicients of two-disk problem

We assume that sensors measure the radial position ro(t) of the slider My and the

angular velocities of the rods () and Q5(¢). Define py := Q%, py := Q2, then py(¢) € [0, 9]

and po(t) € [0, 25]. Let zy :=ry, @2 := ro, &3 1= r1, ¥4 := ro, u:= f and y := ry, then the

system T’p of plant model (6.1.1)-(6.1.2) can be written in the LPV form:

where P := [0,

0 0
0 0
nt) -3 -
— 1 pa(t) = 317
0 1
9] x [0, 25].

1 0 0 0 0
0 10 0 0

w0 S O
0 -3 0 0 §
0 0 0 0 0

8

(1)
w2(t)
z3(t)
z4(t)

u(?)
dq (2

~—

. (6.1.3)
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The control objective is: to minimize the effect of reference input, measurement
noise and disturbances on the tracking error with respect to “small” commanded input.
Based on the time-invariant ideas, these objectives are quantified by rational weighting

functions and the weighted open-loop interconnection is given in Figure 6.1.

€y €,
W, W,
ref
A _ c,
. Ue Act " T, W,
y r’ €
di
dy,
W, +——

n

Figure 6.1: Weighted open-loop plant interconnection of two-disk problem.

where
2
Wels) = Toor
1
Wu (8) = %,
W,(s) := 0.00001,
s+ 0.4
Wn = T AT a0
(s) 0.01s + 400
1
ACt(S) = m

With this setup, the LQG performance measure to be minimized is given by

O = lim o7,
T—00

with o7 = & {4 J) [eX (Den(t) + el (Deu(t) + el (D)ea(t)] dt}.
6.1.2 Synthesis and Simulation Results

The weighted open-loop system has 7 states, 5 outputs and 5 inputs. Because the state-

space data of LPV system (6.1.3) are affine functions of parameter, and Bz, C'; are constants,
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it is sufficient to do the synthesis only for all “corners” of the rectangular parameter space,
namely, {(0,0), (9,0), (0,25), (9,25)}. Follow the “one-step” scheme in Theorem 2.5.2 and
note that Remark 2.5.1 holds for this problem, we solve for X,Y and obtain o., < ysup =
2.54 using linear objective solver (LINOBJ) in LMIlab [GahNLC]. This implies that for
white noise command input ref and disturbances dy, dy with unit intensity, the expectation
of the integral fOT {e?(t)er () + el (t)e, (t) + eg(t)ea(t)} dt averaged over time interval [0, 7]
is less than 2.54 for all T' > 0 and p € Fp.

With synthesized X,Y, we can construct output-feedback LPV controller directly.
The state-feedback LPV controller plus Kalman filter is resulted by real-time implementa-
tion of the Kalman filter. Then we want to evaluate the performance of two LPV controllers
from different aspects.
LQG Performance for Frozen Parameter
For each fixed point in the set P, we can synthesize the 5 optimal controller and compute
its LQG performance. Also we can calculate the LQG performance of closed-loop systems
using two LPV controllers evaluated at the same fixed parameter. The frozen performance

at 9 fixed points for both cases are shown in Tables 6.2 and Table 6.3 respectively.

Q
0.0 3.5355 5.0
0.0 2.0185 2.1003 2.2061
Qp  2.1213 || 2.0792 2.1758 2.2931
3.0 2.1528 2.2617 2.3883

Table 6.2: Frozen Hy optimal closed-loop LQG performance.

Q
0.0 3.5355 5.0
0.0 2.2610/2.2556  2.2253/2.2206 2.2445/2.2409
Q  2.1213 || 2.2461/2.2412  2.2430/2.2391 2.3063/2.3038

3.0 2.2522/2.2480 2.2882/2.2853  2.4057/2.4040
Table 6.3: Closed-loop LQG performance using output-feedback LPV
controller /state-feedback LPV controller plus Kalman filter at frozen
parameters.
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From above tables, the optimal LQG performance at these 9 points ranges from
2.02 to 2.39. The performance using output-feedback LPV control is between 2.23 to 2.41,
and state-feedback LPV control plus Kalman filter is from 2.22 to 2.40. The closed-loop
performances of both LPV controllers are very close while the state-feedback LPV control
plus Kalman filter performs slightly better. Both of them are about 0.7% to 12% higher than
Ho optimal controller. LPV controls are inferior to o optimal control at fixed parameters
because they are designed with respect to time-varying parameters. The maximum of
LQG performance using both LPV controllers is 2.41, which is less than the guaranteed
performance bound 2.54 as expected.

Controller Frequency Response

We then compare the frequency responses of Hs optimal controller and two LPV controllers
at fixed parameters. All of the controllers have two inputs (reference input ref and mea-
surement y) and one output (control input u.). The frequency responses from ref to u.
for 9 fixed points are shown in Figures 6.4, 6.5, 6.6, 6.7, 6.8, 6.9. Similarly, the frequency
responses of the second channel (from y to u.) are given by Figures 6.10, 6.11, 6.12, 6.13,
6.14, 6.15.

Although two LPV controllers achieve almost identical LQG performance for fixed
parameter, and have similar time response as shown later, we observe that the frequency
response of state-feedback control plus Kalman filter is similar to that of the optimal con-
troller, but different from that of the output-feedback LPV controller.

Step Response

Next we compare the fixed parameter closed-loop performance of 5 optimal controller and
two LPV controllers while tracking an unit step reference command. The step responses at
9 fixed parameters are shown in Figures 6.16, 6.17, 6.18. The corresponding control forces
are given by Figures 6.19, 6.20, 6.21. Note that the response using state-feedback controller
plus Kalman filter coincides with the one using output-feedback controller.

Again, we observe that LPV controlled step responses and control efforts are very
close. The tracking performances (rise time, tracking error) of closed-loop system using two
LPV controllers are slightly inferior to the optimal case, and control forces are also higher,
which shows the sub-optimality of the LPV controllers for fixed parameters.

After carefully comparing the characteristics of LPV controllers with H optimal
controller for fixed parameters, we will study the behavior of LPV systems with time-varying

parameter trajectory by nonlinear simulation.



108

Simulation of LPV System with Time-Varying Trajectory

The parameter trajectories are chosen to be
p1(t) = 4.5 (sin(1.5¢) + 1),  p2(t) = 12.5(cos(0.7t) + 1) .

for simulation purpose. The reference input is a sequence of step commands, and distur-
bances, noise are set to zeros. For comparison, we can also simulate the response of o
optimal LTV control for a given parameter trajectory. The step responses and actual control
forces for such parameter variations using output-feedback LPV controller, state-feedback
LPV controller plus Kalman filter and optimal LTV controller are shown in Figures 6.22,
6.23. Note that the reference command is in dash-dot line.

From the simulation results, we clearly see that the behaviors of both LPV con-
trollers are quite similar, which was observed before in fixed parameter case. Furthermore,
their performances are comparable with 7y optimal LTV controller. Note that the optimal
LTV controller can only be synthesized with respect to a specific parameter trajectory before
hand, while LPV controllers are constructed without a priori information of parameters.
But output-feedback LPV controller is more suitable for this problem because its imple-
mentation does not require real-time computation of differential Riccati equation related to

Kalman filter.

6.2 Induced L,-Norm Control Example

In this section, we design an LPV controller for a missile pitch-axis autopilot. Our method is
different from the approach proposed in [NicRR], where traditional gain-scheduling method
is combined with extended linearization ideas [BauR], [Rug|. They synthesize linear time-
invariant H., controller at distinct operating points, and interpolate these controllers with
respect to the operating condition of the missile. As pointed out in their paper, the gain-
scheduling controller should perform well for small, sufficiently slow varying signals. Eval-
uation of control performance in more demanding situations essentially requires extensive
simulations. In LPV control approach, the missile is treated as a single entity, and the
gain-scheduling is achieved entirely by the parameter-dependent controller. The closed-loop
system is guaranteed with quadratic stability and bounded induced-L3;-norm performance
as long as the parameter stays in the given bounded set. The systematic scheme of LPV

control theory largely simplifies the design procedure, and provides theoretical justification
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for the gain-scheduling design.

6.2.1 Missile Model and Performance Objective
The pitch-axis missile model is described by

a(t) = K M()Cplalt),s(t), M(t)]cos(a(t)) + q(t) (6.2.1)
i() = KM(1)Cpla(t),8(t), M(1)], (6.2.2)

where the aerodynamic coefficients are

Colod,M] = sgn(a) [an|a|3-|—bn|oz|2-|—cn (2—%) |a|]+dn5

Colend, M] = sgn(a) [am|a|3 Fblal? + e (—7 n %) |oz|] +d,.5,

and the output is normal acceleration
(t) = K.M*(t)Cy [a(t), 6(t), M (#)] - (6.2.3)
Actuator dynamics describing the tail deflection are

4 ‘?(t) |0 ! é(t) Y 5.(1), (6.2.4)
5(t) —w?  —2Cw, 5(t) w2

a a

The various variables in plant model are

a(t)  angle of attack (deg)

q(t)  pitch rate (deg/sec)

M(t) Mach number

d.(t) commanded tail deflection angle (deg)
d(t)  actual tail deflection angle (deg)

n.(t) commanded normal acceleration in ¢'s

n(t)  actual normal acceleration in ¢'s.

The variables n(t) and ¢(t) are measured, thus available for feedback use. Angle of attack
a(t), Mach number M (t) are variables to be used for scheduling purposes. The input to
the plant is commanded tail deflection é.(t).

Further description of various constants, including their numerical values, is pro-
vided in Table 6.4.

The performance goals for the closed-loop system are:
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K, = (0.7)PoS/mu,
K, =(0.7)P,Sd/I,
K. = (0.T)FPyS/m

A, = (0.7) P SCy/m

Py = 973.3 lbs/ ft? static pressure at 20,000 ft
S =0.44 ft? surface area
m = 13.98 slugs mass
vs = 1036.4 ft/s speed of sound at 20,000 ft
d=0.75 ft diameter
I, = 182.5 slug. ft* pitch moment of inertia
C,=-0.3 drag coefficient
¢=0.7 actuator damping ratio
we = 150 rad/s actuator undamped natural frequency

a, = 0.000103 deg~>
b, = —0.00945 deg—?2
cn = —0.1696 deg~!
d, = —0.034 deg~!
ay, = 0.000215 deg=>
by, = —0.0195 deg =2
Cm = 0.051 deg™!
dy = —0.206 deg™?

Table 6.4: Coeflicients of pitch-axis missile model

e Maintain robust stability over the operating range specified by («(t), M (t)) such that
—20° < at) < 20° and 2 < M(t) < 4. Robust stability is shown by varying angle
of attack and tail-deflection component in coefficients C,,, and ), by £25% and 10%
independently.

e Track step commands in 7.(¢) with time constant no greater than 0.35 sec, maximum

overshoot no greater than 10%, and steady-state error no greater than 1%.

e Maximum tail deflection rate for 1g step command in 7.(¢) does not exceed 25 deg/sec.
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Let py := a, pg := M, then the LPV form of missile model (6.2.1)-(6.2.3) is written

in the following equations.

d [ a(t) ] _ [ Kapa(t) [anp?(2) + balos(0)] + en (2= 22) | cos(p () 1 ] [ a(t) ]
dt | (1) Ko@) [ampt(0) + blpr(8)] + e (-7 + 22 0 | | 40
+ [ Rapr(B)dneos(on (1) ] 3(t), (6.2.5)
Ky p3(0)d
[ n(t) ] _ [ K, p? [anp%(t) + bplp1 ()| + en (2— %ﬁ)} 0 ] [ alt) ]
q(t) 0 1 q(t)
+ [ Kepa(O)ds ] 5(1). (6.2.6)
0

where the parameter set P = [—20, 20] x [2, 4]. As the first parameter p; is actually one
of the states in missile model, we call this plant “quasi-LPV” system.

Similar to the synthesis procedure for LTI systems, we use rational weighting
functions to characterize the overall closed-loop performance objective. The open-loop

interconnection for synthesis is shown in Figure 6.2

Wref
€§
W
Ne err n - e,
o _ oc —f Act Missile e We —
Y
d
Wy f—
n2
d
Sr W, —"
n

Figure 6.2: Weighted open-loop interconnection of missile plant.

where

144(—0.055 4 1)
$24+2 % 0.8 x 125 + 144

Wiep(s) =
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_0.2 1 1 1 1 1 1 1 1 1
o] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 6.3: Unit step response through weighting function W,.;.

0.55 + 17.321
Wels) = —gosm
S
W;(s) 25(0.0055 + 1)
Wp (s) = Wy, (s) :=0.001,
Act(s) = 1.

Specifically, the weighting function W, reflects the designated step response (Figure 6.3),
which exhibits no more than 0.35sec time constant and non-minimum phase characteristics
of the missile plant. The non-minimum phase property can be verified by local Jacobian
linearization of missile model, in which the right-half plane zero ranges from 20.0 to 46.0.
With no real theory to guide us, we simply pick the slowest zero (s = 20.0) in the de-
sired command response filter. The weighting function W, has a low frequency gain 300,
which corresponds to tighter, 0.33%, tracking error, and high frequency gain 0.5 to limit
overshoot less than 5%. In order to keep the order of weighted system as low as possible,
we deliberately exclude actuator dynamics in the open-loop interconnection. The actuator
model (6.2.4) will only be used for simulation purpose.

The weighted open-loop LPV system has 6 states in which 2 states are from missile

plant, and remaining 4 states from weighting functions. The system has 6 inputs and 6
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outputs. The LPV controller measures 2 outputs (normal acceleration tracking error err

and pitch rate measurement y) and generates one control input (commanded tail deflection

5e).

6.2.2 Synthesis and Simulation Results

To do the synthesis for the weighted LPV system, which has nonlinear dependence on
parameters «, M, we need to grid the two-dimensional parameter space P. It is easy to
observe that the state-space data of missile model in LPV form (6.2.5)-(6.2.6) are symmetric
with respect to py, so we only have to consider half parameter space. Particularly, gridding

the half of parameter space P by 6 x 6 points, that is
V:=A{(p1,p2) : p1 € {0,4,8,12,16,20},p2 € {2,2.4,2.8,3.2,3.6,4}} .

This is actually very rough gridding for the parameter space, so we need to verify the
resulting solutions X and Y on finer griddings after the synthesis.

Implementing Theorem 5.3.7 in [Bec] with LMIlab [GahNLC], we solve X, Y which
satisfy the constraints on all p € V and optimal v = 3.13 within 0.1% error. Furthermore,
we check resulted X,Y and v value over 100 X 100 uniformly spaced points of P. The
maximum eigenvalue of state-feedback, output estimation and negative coupling conditions
ranges from —5.57 X 1077 to —6.17 x 1072, which indicates that the LMIs are indeed solved
over the whole parameter space P. So the closed-loop LPV system’s induced Ls-norm,
from disturbance to error, is guaranteed less than 3.13 for arbitrarily fast-varying parameter
trajectory in the set P.

An admissible parameter-dependent controller can be constructed using resulted
X, Y [Bec, Theorem 5.3.7]. Then we would like to analyze its property from several aspects.
Induced L;-Norm Performance at Frozen Parameters
For each fixed point in P, the system is in LTI form. So we can synthesize optimal H
controller for this point. Also by evaluating LPV controller at this parameter, we come up
with a (sub) optimal controller for resulted LTI system. The closed-loop H.,-norm at 9
selected points are shown in Tables 6.5 and 6.6.

The optimal v performance for all fixed points ranges from 0.30 to 0.96. The
performance level using LPV controller at fixed parameter values is between 0.89 to 2.66,

which is less than 3.13 as expected. The performance of LPV controller is 98% to 414%
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Mach
2.0 3.0 4.0
0.0 [ 0.9570 0.4492 0.3320

a 10.0 || 0.7617 0.3320 0.3027
20.0 || 0.6641 0.3027 0.3027

Table 6.5: Frozen optimal closed-loop H.,-norm.

Mach
2.0 3.0 4.0
0.0 || 2.6613 0.8898 1.1704
a 10.0 || 2.0870 0.8899 1.4335
20.0 || 1.7809 0.8900 1.5574

Table 6.6: Frozen LPV closed-loop H.,-norm.

higher than optimal one. So the LPV controller is not optimal for fixed parameters, but
remember that LPV controller is designed for time-varying parameters.

Controller Frequency Response

The controller has two inputs (acceleration tracking error err and measurement y of pitch
rate) and one output (tail-deflection command é.). For 9 fixed parameter values, we get
optimal controller and LPV controller evaluated at these points. The frequency responses
of both controllers from err to §. are shown in Figures 6.24, 6.25 6.26, 6.27. The frequency
responses from y to d. are shown in Figures 6.28, 6.29, 6.30, 6.31.

Note that the frequency responses of both controllers are quite different. The
transfer functions of the second channel in the optimal controller are zeros for some fixed
parameters, which means the missile is solely controlled by the first channel signal at these
points.

Step Response

Next, we will compare the closed-loop response for unit step acceleration command using
both optimal and LPV controllers. Recall the performance objective is: no more than
0.35sec time constant, less than 10% over-shoot and no more than 1% steady-state tracking

error, tail-deflection rate should be less than 25 deg/sec/g. The tracking behavior n(t) of
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both controllers under 1g step input at 9 fixed points are given in Figures 6.32, 6.33. The
corresponding tail-deflection rates are shown in Figures 6.34 and 6.35.

From the time responses, we observe that the majority of the performance ob-
jectives are met although LPV controller has certain degree of performance degradation
(slower rise time, higher command signal) compared with optimal controller,

Now, we are in the position to do non-linear simulations for the missile prob-
lem. While Mach number is an exogenous scheduling variable in the design, for simulation

purposes we set it to be:

@) = - [-Olsin{la(®)) + A,3%() cos(alt)]
M(0) = My,

this will provide a reasonably realistic Mach profile [NicRR].
Recall in LPV control theory, the parameters are assumed to be measurable in
real-time. But for the missile problem we are looking at, one of LPV plant parameters,

namely, angle of attack « is not measurable. In output equation (6.2.3),
n= f(Ot,5, M) = I{zMZCn (04,5, M)a

all variables are measurable except «. By inverse function theorem, « is solvable in terms
of 7,8 and M. The polynomial approximation of the inverse function o = f~1(n,§, M) is
given by

o, = —1.396—0.33421 My — 3.76536x — 0.91681 5 My
+ 1y (—46.03 4+ 21.26 My — 8.8362M% — 0.335640 5 + 0.3856n My + 0.328928 5 MF,)
+ % (61.367 — 69.756 M + 30.44 M3 + 3.95895y — 15.6685y My + 11.4980 MY,)
+ 73 (—54.655 4 94.381 My — 48.212M 7% — 4.79730 x5 + 18.807dy My — 1387168 M7 .
(6.2.7)

where the normalized variables ny := 1/60.0, 5 := (6§ — 10.0)/25.0 and My := M — 3.0.
The relative approximation error ranges from 0.002% to 38%, and the mean of errors is
about 8%. So the curve fitting is ok but not perfect. The a estimator (6.2.7) is kept the
same throughout simulations even in the cases where we perturb the missile aerodynamic
coefficients (', and C,,.

In Figure 6.36, we plot the commanded acceleration 7.(t) (dash-dot line) and
missile’s actual acceleration 7(t) using LPV controller. Figures 6.37, 6.38 show the corre-

sponding angle of attack a(t), and tail-deflection rate §(t) with given acceleration command.
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From the simulation results, It is clear that tracking performance and tail-deflection rate
requirements are satisfied very well.

The robustness property of the LPV controller is shown by perturbing aerodynamic
coefficients ', and (), independently. For C,,, we simultaneously perturb a,,,b,, and ¢,,
from their nominal values by a factor of 1.25 and 0.75, d,, by a factor of 1.25 and 0.75
from its nominal value. Similar perturbations to (', are carried out, but the variations are
limited to £10%. Totally, 16 plots result from the combination of all of these variations,
which are shown in Figures 6.39, 6.40, 6.41.

6.3 Benchmark For Comparison

We have developed many types of method to design controller for LPV systems with induced
Lo-norm performance. It is useful to compare all of them at this stage. For such a purpose,
We use the two-disk problem given in 6.1 as our benchmark. The plant model is given in

equation (6.1.3) and the open-loop interconnection is in Figure 6.1 with weighting functions

as
0.3s + 1.2
Wels) s+0.04°
s+ 0.1
Wuls) = GoTet 125
W,o(s) = 0.00001,
s+ 0.4
Wnls) = G0t 1200
1
Act(s) := —0.018_‘_1.

Using p type synthesis method [WuP3], [BalDGPS], we can design a robust con-
troller to tolerate the time-varying parameters in given bounded set P. By measuring pa-
rameters in real-time, we may construct a parameter-dependent controller to gain-schedule
the control action for LPV systems. The performance of LPV control can further be im-
proved with real-time information of parameter derivatives. If the parameter is fixed, then
H optimal control design for LTI systems is applicable.

For this problem, we pick N = 3 and choose the basis functions as

filp) =ag1(p) =1, falp) = 92(p) == p1,  f3(p) = g3(p) := pa.
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These seem natural, given the parameter dependence of the plant on p. So the parameter-

dependent functions X (p) and Y (p) are inthe form of

X(p)=2_f(p)Xis  Y(p) =2 g:Yi.

For synthesis, we use a rather coarse gridding the parameter space P, namely 25 points
with 5 points in each dimension uniformly. Using Theorem 4.3.2, we solve the Parameter-
Dependent ~-Performance Problem at various variation rate levels vy, 5. The relationship

among the optimal achievable performance v and vy, vo are shown in Table 6.7. From the

V2
1073 3.1623  10*
103 | 0.8853 0.8916 0.9932
vy 3.1623 || 0.8944 0.9023 1.0105

104 0.9438 0.9525 1.1305
Table 6.7: Induced Ly-norm performance with various parameter variation
rates.

table, we clearly see the decrease of induced Lg-norm as the bounds of variation rate being
reduced.

The following Table 6.8 shows achievable induced-Ly-norm using different control
design techniques. Note the induced Ly-norms keep decreasing as we have more and more
information about parameters. Also we observe that exploiting the realness of parameter
by LPV control and SQLF does not help much compared with LF'T control method.

Last, we will show the performance of different control methods through nonlinear

simulation. The reference command is a unit step input, and the parameter trajectories are
p1(t) = 4.5 (sin(0.6¢) + 1),  p2(t) = 12.5(cos(0.2t) + 1) .

Note that the derivative of parameters are less than 3.16, so the induced Lg-norm using LPV
controller with PDLF is guaranteed to be less than 0.9 from Table 6.7. The performance
of quadratic LPV control is less than 1.13, while that of robust control less than 1.55. The
performance of LTV control for this particular trajectory is 0.73.

Figure 6.42 shows the tracking performance of four controllers, that is, robust
control, quadratic LPV control, LPV control with PDLF, and LTV control. Figure 6.43 is

the corresponding control forces of four controllers.
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Induced Lo-Norm Parameter variation rates
Bound vy Bound vy

Robust Control with 1.55 s} s}
constant D-scalings
LFT control 1.14 00 00
LPV  control with 1.13 s} s}
SQLF
LPV  control  with 0.89 — 1.13 10* 10*
PDLF
LTV control for a par- 0.73 2.7 2.5
ticular trajectory
Optimal H., control 0.74 — 0.82 0 0
for fixed parameters

Table 6.8: Comparison of performance of different control methods

From the simulation results, we observe that the LTV control is the best among all
control configurations, though it is only suitable for this particular parameter trajectory and
must be calculated in advance. LPV controller with PDLF performs better than quadratic
LPV control, because of the use of parameter dependent Lyapunov function to exploit
bounded parameter variation rates information. The performance of Robust control is the

worst but requires least information of parameters.
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Figure 6.4: H, optimal controller: magnitude plot from reference command
ref to control force u, at 9 fixed parameter values.
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Figure 6.5: Hy optimal controller: phase plot from reference

to control force u,. at 9 fixed parameter values.

3

command ref



120

Log Magnitude

107° 1072 107" 10° 10
Frequency(rad/sec)

Figure 6.6: Output-feedback LPV controller: magnitude plot from reference
command ref to control force u. at 9 fixed parameter values.
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Figure 6.7: Output-feedback LPV controller: phase plot from reference com-
mand ref to control force u, at 9 fixed parameter values.
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Figure 6.8: State-feedback LPV controller plus Kalman filter: magnitude
plot from reference command ref to control force u,. at 9 fixed parameter

values.
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Figure 6.9: State-feedback LPV controller plus Kalman filter: phase plot
from reference command ref to control force u. at 9 fixed parameter values.
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Figure 6.10: Hy optimal controller: magnitude plot from measurement y to
control force u. at 9 fixed parameter values.
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Figure 6.11: Hy optimal controller: phase plot from measurement y to con-

trol force u. at 9 fixed parameter values.
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Figure 6.12: Output-feedback LPV controller: magnitude plot from mea-
surement y to control force u. at 9 fixed parameter values.
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Figure 6.13: Output-feedback LPV controller: phase plot from measurement
y to control force u. at 9 fixed parameter values.
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Figure 6.14: State-feedback LPV controller plus Kalman filter: magnitude
plot from measurement y to control force u. at 9 fixed parameter values.
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Figure 6.15: State-feedback LPV controller plus Kalman filter: phase plot
from measurement y to control force u. at 9 fixed parameter values.
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Figure 6.16: Fixed parameter step response ry(t) using Hg optimal

controller.
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Figure 6.17: Fixed parameter step response ry(t) using output-feedback LPV
controller.
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Figure 6.18: Fixed parameter step response r(t) using state-feedback LPV
controller plus Kalman filter.
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Figure 6.19: Fixed parameter control force u(t) using #, optimal controller.
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Figure 6.20: Fixed parameter control force u(t) using output-feedback LPV
controller.
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Figure 6.21: Fixed parameter control force u(t) using state-feedback LPV
controller plus Kalman filter.
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Figure 6.22: Position ry(t) using output-feedback LPV controller (dash line),

state-feedback LPV control with Kalman filter (dot line) and optimal LTV

controller (solid line) to track a given command.
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Figure 6.23: Actual control force u(t) of output-feedback LPV controller

(dash line), state-feedback LPV control with Kalman filter (dot line) and

optimal LTV controller (solid line) for a given command.
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Figure 6.24: H., optimal controller: magnitude plot from tracking error err
to acceleration command 6. at fixed parameter values.
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Figure 6.25: H., optimal controller: phase plot from tracking error err to
tail-deflection command §. at 9 fixed parameter values.
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Figure 6.26: LPV controller: magnitude plot from tracking error err to
tail-deflection command §. at 9 fixed parameter values.
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Figure 6.27: LPV controller: phase plot from tracking error err to tail-
deflection command &, at 9 fixed parameter values.
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Figure 6.28: H., optimal controller: magnitude plot from measurement y to
tail-deflection command §. at 9 fixed parameter values.
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Figure 6.29: H., optimal controller: phase plot from measurement y to
tail-deflection command §. at 9 fixed parameter values.
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Figure 6.30: LPV controller: magnitude plot from measurement y to tail-
deflection command &, at 9 fixed parameter values.
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Figure 6.31: LPV controller: phase plot from measurement y to tail-
deflection command &, at 9 fixed parameter values.
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Figure 6.32: Fixed parameter lg step response n(t) for M. optimal
controller.
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Figure 6.33: Fixed parameter 1g step response 7(t) for LPV controller.
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Figure 6.34: Fixed parameter tail-deflection rate 6(t) for H., optimal
controller.
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Figure 6.35: Fixed parameter tail-deflection rate é(t) for LPV controller.
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Figure 6.36: Normal acceleration n(t) tracking a sequence of step acceleration

commands 7.(t).
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Figure 6.37: Angle-of-attack «(t) with respect to a given acceleration
command.

_25 L L 1 1 1 L
0



136

800 T T T T T T T

600 |- b

400 4

200 y

—-200 T

Tail-deflection rate(deg/sec)

—400 4

-600[ b

-800 n

_1000 1 L 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4
. Time(sec)
Figure 6.38: Tail-deflection rate §(¢) with respect to a given acceleration

command.
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Figure 6.39: Normal acceleration n(t) with perturbed C}, and C,.
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Figure 6.40: Angle-of-attack «(t) with perturbed C), and C,,.
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Figure 6.41: Tail-deflection rate §(t) with perturbed ), and C,,.
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Figure 6.42: Position ry(t) using different control scheme: robust control
(solid line), quadratic LPV control (dash line) and LPV control with PDLF

(dot line) and LTV control (dash-dot line).
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Figure 6.43: Control forces of different control scheme: robust control (solid

line), quadratic LPV control (dash line), LPV control with PDLF (dot line)
and LTV control (dash-dot line).
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Chapter 7

Conclusion

We summarize the important results of the thesis and make some remarks for future research
in this chapter.

In this thesis, we have studied the control problems of linear parameter varying
systems. Our study is motivated by the gain-scheduling design techniques, and provides a
new gain-scheduling approach which is unique for its solid theoretical foundation.

The ultimate goal of our research is to formulate our analysis and synthesis re-
sults in LMIs. LMI is a special type of convex problem which can be solved efficiently by
algorithms such as method of centers [BoyE], [Fan], projective method [NemG] [GahNLC],
etc.

In the first part, we define the LQG performance for LPV systems as the expec-
tation of quadratic integral of output variables, which is analogous to the standard H,
performance for LTI and LTV systems. We formulate two analysis results in LMIs to
bound the LQG performance of LPV systems. The performance bounds we got are less
conservative than those in [BerH4] and computationally attractive. Based on the analysis
results, we propose two output-feedback controller configurations for LPV systems, which
have the familiar state-feedback plus state estimation structure. We derive the same LQG
performance bound for the closed-loop systems and propose a convex optimization scheme
to minimize the bound.

In the second part, we study the induced Ly-norm control problem for LPV sys-
tems, which have bounded parameter variation rates and el-time measurement of the pa-
rameter and its derivative. The key idea is that parameter dependent Lyapunov function

can exploit bounded parameter variation information and reduce the conservatism caused
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by single quadratic Lyapunov function. We formulate a sufficient condition to test if the
LPV system has induced Ls-norm less than a prescribed performance level +. For synthesis
problem, we derive the necessary and sufficient conditions for the existence of a parameter
dependent controller that renders the closed-loop performance less than +. The condition
is written as LMIs of continuously differentiable functions X (p) and Y (p), and leads to infi-
nite dimensional convex feasibility problem. By parameterizing the function space through
a finite number of scalar basis functions, the solvability condition is converted to a finite
dimensional convex problem. The solution generally involves gridding of parameter space
and sufficient gridding density is given explicitly. Our results will solve some problems
which can not be done by [ApkG], [ApkGB], [Bec], [BecP], [Pac] and [BecP]. Furthermore,
by restricting Lyapunov function as constant positive definite matrix, our results recover
theirs.

The theoretical results have been used to the design of LPV controller for some
examples. The induced Ly-norm control method is used to design the pitch-axis autopilot
for missiles, The resulted performance of such a controller is comparable to current gain-
scheduling design approach but with guaranteed stability and performance in mind. We
also use a two disk problem as a benchmark to compare different control methods.

Beside the results presented in this thesis, there are some questions remaining

unsolved, for example:

e Though a convex procedure is proposed to reduce the LQG performance bound, the
exact minimization of the bound is not obtained. In our opinion, it is unlikely to

formulate a convex optimization to do such minimization.

o At this level, it is not clear how to parameterize the infinite dimensional function
space efficiently. In our approach, we approximate a subspace of the function space
with a finite number of basis functions. There is not much guidance for the selection

of the bases. It would be of interest to pursue such issues theoretically.

e We have shown the advantage of using parameter dependent Lyapunov functions for
the induced Lg-norm performance problem of LPV systems in this thesis. It would be
useful to investigate the possibility of using PDLF for the LQG performance problem

in future.

Finally, we give the following concluding statements: LPV control theory studied
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in this thesis is generalizations of standard Ho and Ho, problems, and such that expand the
applicability and usefulness of modern control methodology. They constitute a new approach

to gain-scheduling and provide well-founded procedure for gain-scheduling design.
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